
SOIL MOISTURE REMOTE SENSING USING ACTIVE 
MICROWAVES AND LAND SURFACE MODELING 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rogier van der Velde 
 



 

Examining Committee: 
 
Prof.dr. F.D. van der Meer University of Twente 
Prof.dr.ing. W. Verhoef University of Twente 
Prof. Y. Ma   Chinese Academy of Sciences 
Prof.dr.ir. N. Verhoest Ghent University 
Prof.dr.ir. N. van de Giesen Delft University of Technology 
Dr. M. Rodell   NASA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
ITC dissertation number 176 
ITC, P.O. Box 6, 7500 AA Enschede, The Netherlands 
 
 
 
 
ISBN 978-90-6164-296-1 
Cover designed by Benno Masselink 
Printed by ITC Printing Department 
Copyright © 2010 by Rogier van der Velde 



 

SOIL MOISTURE REMOTE SENSING USING ACTIVE 
MICROWAVES AND LAND SURFACE MODELING 

 
 
 
 
 
 
 
 

DISSERTATION 
 
 
 
 
 
 
 
 

To obtain 
the doctor’s degree at the University of Twente, 

on the authority of the Rector Magnificus, 
prof.dr. H. Brinksma, 

on account of the decision of the graduation committee, 
to be publicly defended 

on Friday 5 November 2010 at 15:00 hrs 
 
 
 
 
 
 

by 
 

Rogier van der Velde 
 
 

born on 11 June 1980 
 

in Rotterdam 
 



 

This thesis is approved by 
Prof. Dr. Ir. Z. Su, promotor 
Dr. Ir. P.J. van Oevelen, assistant promotor  
 



Preface 
This thesis probably began at one of the fields in the western part 

of Netherlands on 11 November 2001. On that day I broke my leg in 
the most dramatic way; playing soccer with my brother, Clemens, 
against the first team of the rival club from the neighboring town. I 
could not play soccer for a long time and a life till then focused on 
sports needed some remodelling. Being not a very social person, I 
turned to studying, which later became sitting behind a computer and 
at least for most of time pretending to do research.  

After about two years, I got from Peter van Oevelen, also the co-
promotor here, the opportunity to do an internship with Dr. Tom 
Jackson in the United States at the Hydrology and Remote Sensing 
Laboratory. Not knowing that this group is one of the soil moisture 
remote sensing centers in the world, I participated as an MSc student 
in large scale field campaigns and met internationally recognized 
scientists. This led to a PhD position at ITC several months after my 
return to the Netherlands.  

Bob Su, my promoter at ITC, offered me the PhD position, gave 
me responsibilities in several research projects and, as such, created 
the boundary conditions for the start of a scientific carreer, for which 
I am all very grateful. Nevertheless, for several reasons the first 
years were not that succesfull. This changed after Bob Su hired in 
2006 a female PhD student named Harmke van Aken, whom earlier 
this year became my wife. As ITC is originally an institute with a 
strong focus on education and less on research, it lacked the 
expertise in our research fields. Hence, we became effectively each 
other’s advisor. Although Harmke is on none of the papers from this 
thesis a co-author, she easily could have been on each single one. 
Harmke, you decided to end your scientific career, but this thesis is 
also a bit yours. Thank you for all the discussions and allowing me 
the peacefull worktime during the evenings and weekends.  

The other person whom deserves my sincere gratitude is Alicia 
Joseph from NASA’s Goddard Space Flight Center (GSFC). She gave 
me not only friendship, but also access to the extraordinary active 
microwave data sets collected by her and her colleques Peggy O’Neill 
from NASA GSFC and Prof. Roger Lang from George Washington 
University (GWU). Without these data sets, half of this thesis could 
not have been written.  

Further, Prof. Yaoming Ma from the Institute of Tibetan Plateau 
Research (ITP/CAS) is acknowledged for facilitating the field 
campaigns on the Tibetan Plateau and providing data. I also would 
like to thank the co-authors on the papers for their constructive 
criticisms and suggestions, Matt Rodell (NASA/GSFC), Mike Ek 
(EMC/NCEP), Fred Bosveld (KMNI) and Peter van Oevelen (GEWEX). 
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Then at ITC, there were early morning coffees with Wim and 
Suhyb, especially over the past two years. From sharing our 
complaints, successes and frustrations related to work as well as the 
normal struggles of life evolved a strong friendship. I hope that we 
still have many years of working and coffee (or beer) drinking 
together ahead of us.  

For the right boundary conditions in my personal life, apart from 
Harmke, also Clemens is acknowledged. He took care of our parents 
and the bussiness after in January 2009 my father got ill and thereby 
relieved me from a great number of worries at the moment it was 
needed most. My parents, I would like to thank for the childhood in 
your protective care and encouraging me to aim for the highest 
possible in everything you do. The Van Aken’s are thanked for 
providing a comfortable holiday place on the island Texel anytime of 
the year. 

 
Harmke, it is done then … 
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Symbol Name   Units 

α  Albedo - 
β  Bowen ratio - 
γ  Attenuation by the canopy - 

dγ  Density of dry soil kg m-3 

pγ  Psychrometric constant kPa K-1 

Δ  
Slope of the saturated vapor pressure 
curve 

kPa K-1 

ε  Electric permittivity F m-1 

0ε  Electric permittivity of free space F m-1 

rε  Relative permittivity or dielectric 
constant 

- 

dryκ  Thermal conductivity under dry soil 
moisture conditions 

W m-1 K-1 

eκ  Extinction coefficient m-1 

hκ  Thermal conductivity W m-1 K-1 

2h oκ  Thermal conductivity of water W m-1 K-1 

iceκ  Thermal conductivity of ice W m-1 K-1 

oκ  Thermal conductivity of soil particles 
other than quartz 

W m-1 K-1 

qtzκ  Thermal conductivity of quartz W m-1 K-1 

satκ  Thermal conductivity under saturated 
soil moisture conditions 

W m-1 K-1 

λ  Wavelength m 

vλ  heat of vaporization J kg-1 
μ  Magnetic permeability N A-2 

0μ  Magnetic permeability of free space N A-2 

θ  Soil moisture content m3 m-3 

cθ  
Critical soil moisture content below 
which transpiration is reduced due to soil 
moisture stress 

m3 m-3 

(i)θ  Moisture content in the ith soil layer m3 m-3 

iθ  Incidence angle degrees 
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iceθ  Frozen soil moisture content m3 m-3 

ligθ  Liquid soil moisture content m3 m-3 

sθ  Saturated soil moisture content m3 m-3 

wθ  
Soil moisture content at wilting point 
below which soil plants cannot take up 
soil water 

m3 m-3 

ρ  correlation - 

airρ  Air density kg m-3 
σ  scattering cross section of a target m2 m-2 

vσ  Scattering cross section of the 
vegetation 

m-1 

sσ  Stefan-Boltzmann constant W m-2 K-4 
oσ  backscattering coefficient m2 m-2 or dB 
o
surfσ  Surface scattering m2 m-2 or dB 
o
sσ  Soil surface scattering contribution m2 m-2 or dB 

o
s vσ ↔  Scattering contribution from the soil-

vegetation pathways 
m2 m-2 or dB 

o
vσ  Vegetation scattering contribution m2 m-2 or dB 

2
bσ  

Mean squared difference between two 
samples caused by an inherent bias due 
to differences in the climatology of the 
two samples 

- 

2
sσ  

Mean squared difference between two 
samples caused by difference in the 
spatial resolution of the two samples 

- 

2
tσ  Mean total squared difference between 

two samples 
- 

2
uσ  

Mean squared difference between two 
samples caused by uncertainties in the 
two samples 

- 

ψ  Soil water potential m 

sψ  Saturated soil water potential m 
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Roman 
 

Symbol Name   Units 

a0 Soil texture dependent parameters for 
converting the dielectric constant measured 
by an impedance probe (Delta-T theta 
probe)  into sol moisture 

- 

a1 - 

A 
Empirical crop parameter for the cloud 
model 

- 

0A  Area illuminated by a radar beam m2 

eA  Effective area of the antenna m2 

bc 
Empirical parameter of the Campbell soil 
hydraulic model 

- 

bclim 
Systematic bias in soil moisture data sets 
due to a difference  in climatology between 
the two samples 

m3 m-3 

B 
Empirical crop parameter for the cloud 
model 

- 

cp Specific heat capacity of moist air kJ kg-1 K1 
C Differential water capacity m-1 
Ch Surface exchange coefficient for heat - 
Cq Surface exchange coefficient for moisture - 
Cs Soil thermal heat capacity J m-3 K-1 
Csoil Thermal heat capacity of air J m-3 K-1 
Cw Thermal heat capacity of water J m-3 K-1 

cmc 
Moisture content on the leaves of the 
canopy 

kg m-2 

cmcmax 
Maximum moisture content on the leaves of 
the canopy 

kg m-2 

D Soil water diffusivity m2 s-1 
Db Soil moisture deficit in the soil column m3 m-3 
Ds Saturated soil water diffusivity m2 s-1 
e Vapor pressure kPa 
es Surface emissivity - 

Ec 
Evaporation of rain intercepted by 
vegetation 

W m-2 

Edir Soil evaporation W m-2 

Et 
Evaporation through the stomata of 
vegetation 

W m-2 

Ep Potential evaporation W m-2 
E Electric field vector V m-1 
fair Volume fraction air within the soil matrix - 
fc Fractional vegetation cover - 
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fsoil Volume fraction soil within the soil matrix - 
fw Volume fraction water within the soil matrix - 

pqf  Kirchhoff field coefficients utilized with the 
IEM model 

- 

pqF  Complementary field coefficients utilized 
with the IEM model  

- 

fx 
Empirical parameter affecting the soil 
evaporation reduction under soil moisture 
stress conditions 

- 

froot 
Fraction of the root zone represented by 
the ith layer 

- 

0G  Soil heat flux at the surface W m-2 

G10 Soil heat flux at a 0.10 m soil depth W m-2 

tG  Power gain of the transmitting antenna - 
h Canopy height m 

hs 
Empirical parameter describing the optimal 
transpiration conditions with respect to the 
air humidity 

- 

H Sensible heat flux W m-2 
H Magnetic field vector A m-1 
Imax Maximum infiltration capacity m s-1 
k Wave number m-1 
K Hydraulic conductivity m s-1 
Ke Kersten number - 

Kref 
Empirical parameter for Noah runoff 
simulations 

m s-1 

Ks Saturated hydraulic conductivity m s-1 

kdt 
Empirical parameter for Noah runoff 
simulations 

- 

kdtref 
Empirical parameter for Noah runoff 
simulations 

- 

l Correlation length m 

L↓  Longwave incoming radiation W m-2 
LAI Leaf Area Index m2 m-2 

Eλ  Latent heat flux W m-2 
n Number of samples # 

nroot 
Number of root zone layer within the Noah 
model 

# 

P Rain intensity m s-1 
Pa Air pressure kPa 

tP  Power transmitted by an antenna W 

rP  Power received by an antenna W 

q Actual specific humidity kg kg-1 
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qs Saturated specific humidity kg kg-1 
qtz Volume fraction quartz - 
R  Distance between the target and antenna m 
Rc,min Minimum stomatal resistance s m-1 

Rc,hum 
Factor increasing the stomatal resistance in 
case of a sub-optimal air humidity for 
transpiration 

- 

Rc,rad 
Factor increasing the stomatal resistance in 
case of a sub-optimal radiative conditions 
for transpiration 

- 

Rc,soil 
Factor increasing the stomatal resistance in 
case of soil moisture stress on transpiration 

- 

Rc,temp 
Factor increasing the stomatal resistance in 
case of a sub-optimal air temperature for 
transpiration 

- 

Rgl 
Parameter characterized the light-use 
efficiency of a canopy 

W m-2 

Rn Net radiation W m-2 

pR  p-polarized Fresnel reflectivity - 

Rsurf Surface runoff m s-1 

s 
Root mean square of surface height 
variations 

m 

S Water sinks and source to the soil column m s-1 

S ↓  Shortwave incoming radiation W m-2 
t Time step s 
Tair Air temperature K 
Topt Optimum temperature for transpiration K 
Tp_air Potential air temperature K 
   
Ts(i) Soil temperature in the ith soil layer K 
Tskin Skin temperature K 
u Wind speed m s-1 

V1 
vegetation descriptor 1 used within the 
cloud model 

- 

V2 
vegetation descriptor 2 used within the 
cloud model 

- 

W Vegetation water content kg m-2 
x Horizontal displacement m 
z  Surface height m 

z0m 
Aerodynamic roughness length for 
momentum transport 

m 

z0h 
Aerodynamic roughness length for heat 
transport 

m 
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ACF Autocorrelation length Function 
ACM Atmospheric Circulation Models 
ALSIS Atmospheric and Land-Surface Interaction Scheme 
ASCAT Advanced Scatterometer 
ARS Agricultural Research Service 
ASAR Advanced Synthetic Aperture Radar 
BARC Beltsville Agriculture Research Center 
BREB Bowen Ratio Energy Balance 
BST Beijing Standard Time 
CAMP CEOP Asia-Australia Monsoon Project 
CAS Chinese Academy of Sciences 
CDF Cumulative Distribution Function 
CEOP Coordinated Enhanced Observing Period 
EC Eddy Correlation 
ENVISAT Environmental Satellite 
ERS European Remote Sensing satellite 
ESA European Space Agency 
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GEWEX Global Energy and Water cycle Experiment  
GM Global Monitoring mode 
GMES Global Monitoring for Environment and Security 
GSFC Goddard Space Flight Center 
GWU George Washington University 
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JAXA Japan Aerospace Exploration Agency 
KNMI Koninklijk Nederlands Meteorologisch Instituut 
LSM Land Surface Model 
LAI Leaf Area Index 
MM5 Meso-scale Model version 5 
MOST Ministry of Science and Technology 
NASA National Aeronautics and Space Administration 
NCAR National Center for Atmospheric Research 
NCEP National Centers for Environmental Prediction 
NDVI Normalized Difference Vegetation Index 
OPE3 Optimizing Production Inputs for Economic and 

Environmental Enhancements 
OSU Oregon State University 
PALSAR Phased Array type L-band SAR 
PDF Probability Density Function 
PSU Penn State University 
PTF PedoTransfer Function 
RMSD Root Mean Squared Differences 
SAR Synthetic Aperture Radar 
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SHF Soil Hydraulic Function 
SHM Soil Hydraulic Model  
SHP Soil Hydraulic Parameters 
SMAP Soil Moisture Active/Passive mission 
SMOS Soil Moisture and Ocean Salinity mission 
SSD Sum of Squared Differences 
STL Soil Thermal Layer 
STP Soil Thermal Properties 
SWB Simple Water Balance model 
TM Thematic Mapper 
USA United States of America 
USDA United States Department of Agriculture  
VIC Variable Infiltration Capacity model 
WS Wide Swath mode 
 



 xi

Table of Contents 
 
Preface .................................................................................... i 
List of symbols ......................................................................... iii 
List of abbreviations .................................................................. ix 
1 Introduction ...................................................................... 1 

1.1 Background ................................................................ 1 
1.2 Thesis outline .............................................................. 3 

2 Active microwave remote sensing ......................................... 5 
2.1 Introduction ................................................................ 5 
2.2 Backscatter modeling ................................................... 9 

3 The Noah land model ......................................................... 17 
3.1 Introduction ............................................................... 17 
3.2 Soil Water Movement .................................................. 18 
3.3 Drainage and surface runoff ......................................... 20 
3.4 Surface Energy Balance ............................................... 21 
3.5 Soil Heat Flow ............................................................ 24 

4 Data sets ......................................................................... 27 
4.1 OPE3 campaign ........................................................... 27 
4.2 Cabauw data set ......................................................... 33 
4.3 The Tibetan data set ................................................... 35 

5 Effects of a corn canopy on C- and L-band backscatter ........... 45 
5.1 Introduction ............................................................... 45 
5.2 Surface scattering ...................................................... 46 
5.3 σo measurements vs. AIEM simulations .......................... 48 
5.4 Vegetation correction .................................................. 51 
5.5 Soil moisture retrieval ................................................. 56 
5.6 Discussion ................................................................. 60 
5.7 Conclusions ............................................................... 62 

6 Roughness parameter uncertainties on soil moisture retrievals 65 
6.1 Introduction ............................................................... 65 
6.2 Estimated surface roughness parameters ....................... 67 
6.3 Temporal stability of surface roughness ......................... 71 
6.4 Temporal evolution of retrieval errors ............................ 75 
6.5 Conclusions ............................................................... 78 

7 Tibetan land surface conditions observed by ASAR ................. 79 
7.1 Introduction ............................................................... 79 
7.2 Definition of the study areas ........................................ 80 
7.3 Temporal σo variability ................................................. 81 
7.4 Spatial σo variability .................................................... 83 
7.5 Multivariate analysis ................................................... 86 
7.6 Conclusions ............................................................... 92 

8 Soil moisture mapping over the Central Tibet ........................ 95 
8.1 Introduction ............................................................... 95 
8.2 Retrieval algorithm ..................................................... 96 



 xii 

8.3 Surface roughness estimation ....................................... 97 
8.4 Soil moisture mapping and validation .......................... 101 
8.5 Conclusions and discussion ........................................ 107 

9 Evaluation of the Noah soil water flow scheme .................... 109 
9.1 Introduction ............................................................. 109 
9.2 Vertical integration of soil water flow ........................... 111 
9.3 Soil hydraulic functions .............................................. 113 
9.4 Noah simulations with different vertical integration schemes 
for the soil water flow .......................................................... 118 
9.5 Noah simulations using the Campbell and Van Genuchten 
SHM’s for five soil classes ..................................................... 120 
9.6 Conclusions and discussion ........................................ 125 

10 Adaptation of the Noah land model to Tibetan conditions ... 127 
10.1 Introduction ............................................................. 127 
10.2 Noah simulations using default parameter sets ............. 128 
10.3 Optimized Noah simulations ....................................... 133 
10.4 Discussion ............................................................... 141 
10.5 Conclusions ............................................................. 142 

11 How may high resolution soil moisture retrievals improve 
large-scale modeling? ............................................................. 145 

11.1 Introduction ............................................................. 145 
11.2 MM5 simulations ....................................................... 147 
11.3 Separating the sources of difference ............................ 147 
11.4 Bias reduction .......................................................... 148 
11.5 Results and discussion ............................................... 152 
11.6 Summary and conclusions ......................................... 156 

12 Summary and Conclusions ............................................ 159 
12.1 Soil moisture retrieval from active microwaves ............. 159 
12.2 Simulation of land processes ...................................... 162 
12.3 Integration of satellite retrievals with land models ......... 164 

Bibliography .......................................................................... 167 
Samenvatting ....................................................................... 185 

Bodemvocht schattingen door middel van actieve microgolven .. 185 
Simulatie van land processen ................................................ 188 
Integratie van satellite observaties met land modellen ............. 190 

ITC Dissertation List ............................................................... 193 



 

1 

1 Introduction 

1.1 Background  
The partitioning of solar radiation into energy for warming the 

atmosphere and for evaporation is constrained by the availability of 
water in the soil. Below critical soil moisture levels evaporation is 
suboptimal and the radiation excess is converted into heat. Hence, 
more water vapour is brought into the atmosphere under wet than 
under dry soil conditions, which positively influences the formation of 
clouds that leads eventually to precipitation. There is evidence that 
this feedback mechanism can result in persistent wet and dry 
patterns (e.g. Koster et al. 2004, Shukla and Mintz 1982) causing 
extreme events, such as floods and droughts. Several studies (e.g. 
Bosilovich and Sun 1999, Ferranti and Viterbo 2006) have shown that 
the skill of atmospheric circulation models (ACM’s) in predicting the 
timing and severity of such extreme events on a seasonal scale would 
increase when the simulation of soil moisture is improved.  

In the coupling of land surface models (LSM’s) to ACM’s progress 
has been made towards an improved soil moisture simulation. As 
quantification of land-atmosphere interactions is its main task, a LSM 
focuses on characterizing physical processes related to the surface 
hydrology and the surface energy budget. ACM’s are, however, 
computationally demanding and, thus, the numerical complexity of 
the LSM has to be limited. Traditionally, the LSM structure includes a 
detailed description of the ‘above-ground’ processes, whereas 
parsimonious parameterizations are used for the surface hydrology 
component (e.g. De Rosnay et al. 2000, Yang et al. 2005, Gulden et 
al. 2007). Merely based on this fact, soil moisture simulations by a 
LSM are expected to be uncertain. However, as any model, the 
reliability of LSM simulations is also affected by uncertainties in 
applied parameterizations (i.e. Gutmann and Small 2007), the initial 
and boundary conditions (i.e. Rodell et al. 2005) and, if operated 
separately from an ACM, the atmospheric forcings (i.e. Kato et al. 
2007, Sheffield et al. 2006, Berg et al. 2003).  

Thorough evaluation against a ‘ground truth’ can identify the 
impact of these different sources of uncertainty and improve the 
overall performance. In general, a comprehensive set of in-situ 
measurements is regarded as the foundation for assessing the 
performance of LSM’s. The scientific community has, therefore, set up 
various intensive measurement programs (e.g. Henderson-Sellers et 
al. 1996, Wood et al. 1998, Lawford et al. 2007). Nevertheless, the 
distribution of in-situ measurements throughout the globe remains 
sparse. Moreover, a challenge lies also in comparing measurements 
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to model outputs. The spatial and temporal representation and, most 
of all, the reliability of measurements cannot be taken for granted.  

An alternative approach towards reducing model uncertainties 
forms data assimilation (e.g. Evensen 2006). Over the past decade, 
its potential application to global LSM simulations increased with the 
availability of remote sensing observations capable of monitoring 
relevant states. Large-scale soil moisture monitoring is, for example, 
possible by interpreting microwave measurements (e.g. Jackson 
1993, Owe et al. 2001, Dubois et al. 1995, Wagner and Scipal 2000). 
Favorable for soil moisture monitoring purposes are the lower 
microwave frequencies (<6.6 GHz) because they are less affected by 
clouds and vegetation.  

Various low frequency passive as well as active sensors are in 
orbit or scheduled for launch. However, the first mission, Soil 
moisture and Ocean Salinity (SMOS),  dedicated to soil moisture has 
only recently been launched by the European Space Agency (ESA) 
and another one, Soil Moisture Active/Passive (SMAP), by National 
Aeronautics and Space Administration (NASA) is in preparation 
(expected launch: 2015). Both missions (will) collect L-band (~ 1.4 
GHz) microwave measurements at temporal resolutions of 2-3 days. 
Similar specifications are expected for NASA’s Aquarius mission 
(expected launch: 2011), but its main objective is monitoring the 
ocean salinity.  

Although it is expected that these missions will have 
unprecedented contributions to global soil moisture monitoring, the 
employed sensing techniques limit the spatial resolution of their 
measurements to several tens of kilometers. Soil moisture observed 
at this resolution is important for explaining variations on a seasonal 
scale (e.g. Vinnikov et al. 1996), but is unable to capture the 
dynamics at smaller time scales. At present, spatial resolutions up to 
several meters can only be achieved from space when active 
microwave measurements are collected using the Synthetic Aperture 
Radar (SAR) technique. However, the temporal resolution of SAR 
observations is either coarse (> 30 days) due to limitations in the 
sensing configuration or cannot be guarantied in case of multi-mode 
systems. Moreover, the reliability of SAR based soil moisture products 
is considered to be inferior to the coarser resolution products.  

Retrieval of soil moisture using active microwaves is, in general, 
complicated by the scattering from rough surfaces and vegetation 
whose geometry is unknown. Therefore, large-scale soil moisture 
mapping relies often on semi-empirical radiative transfer models (e.g. 
Attema and Ulaby 1978, Bindlish and Barros 2000) or on empirical 
change detection approaches (e.g. Wagner and Scipal 2000, Njoku et 
al. 2002). Semi-empirical radiative transfer models provide only a 
partial description of the scattering from vegetation covered surfaces 
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and, using a change detection method, the surface roughness and 
vegetation effects on scattering are assumed to be time-invariant. 
This shows that active microwave soil moisture retrieval algorithms 
have not been fully developed yet. Moreover, the uncertainties 
imposed on the retrievals by the simplifying assumptions have not 
been quantified.  

1.2 Thesis outline 
This thesis contributes to the reliability of active microwave soil 

moisture retrieval algorithms and discusses uncertain LSM 
simulations. Via data integration techniques, such as data 
assimilation, the availability of more accurate soil moisture retrievals 
can assist in reducing model uncertainties. Much progress can, 
however, also be obtained by evaluating LSM uncertainties caused by 
the parameterizations and/or the model structure.  

Soil moisture retrieval using active microwaves is studied using 
two data sets. First, C- and L-band backscatter (σo) measured 
throughout the corn growth cycle at a field near Beltsville (Maryland, 
USA) by a truck-mounted scatterometer is discussed. Based on these 
measurements, vegetation effects on active microwaves are identified 
and a new concept to correct for these effects is presented (Chapter 
5). Then, Chapter 6 discusses the influence of assumptions 
regarding the surface roughness on the soil moisture retrieved from 
the vegetation corrected radar measurements.  

A 2.5 years series of C-band SAR images acquired by the 
Advanced SAR (ASAR) over the central part of the Tibetan Plateau 
forms the second set.  In Chapter 7, the impact of changes in land 
surface states (e.g. soil moisture, temperature and biomass) on those 
σo signatures is analyzed. Based on this knowledge, a method is 
developed for retrieving soil moisture from the ASAR data sets 
(Chapter 8).  

The Noah LSM is adopted for the modelling part of this thesis. 
Using atmospheric forcings measured at the Cabauw meteorological 
station (The Netherlands) its operational soil water flow scheme is 
evaluated (Chapter 9). Noah’s application to measurements 
collected at a Tibetan site addresses the implications of parameter 
uncertainties (Chapter 10). Chapter 11 presents a comparison of 
the soil moisture retrievals from Chapter 8 against simulations by 
Noah coupled to the MM5 (Meso-scale Model version 5, Grell et 
al.1994) regional climate model.  

Further, Chapters 2 – 4 describe the principle of soil moisture 
retrieval from active microwaves, the Noah model structure and the 
utilized data sets.  
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2 Active microwave remote sensing 

2.1 Introduction 
Backscattering coefficient 
Remote sensing radars transmit electromagnetic waves to the 

earth’ surface and measure the amount of radiation scattered back at 
the same position as where the waves were originally transmitted. 
Then, the power received by a radar antenna is a function of the 
transmitted power corrected for the two-way spreading loss and 
losses caused by the target, which can be expressed by (e.g. Ulaby 
1982),  

( )224
t t e

r
PG AP

R
σ

π
=  

(2.1) 

where, Pt is the transmitted power [W], Pr is the received power 
[W], Gt  is the transmitter power gain [-], Ae is the effective area of 
the antenna [m2], R is the distance from the radar to the target [m] 
and σ is the scattering cross section [m2]. 

Eq. 2.1 is known as the radar equation. Via the radar theory (e.g. 
Ulaby et al. 1981) it can be shown that the effective area of a radar 
antenna and the power gain are related to each other as,  

2

4
t

e
GA λ
π

=  (2.2) 

where, λ is the wavelength [m]. 
Substitution of Eq. 2.2 into 2.1 yields a more commonly used 

form of the radar equation, in which the received power is expressed 
in terms of the effective antenna area according to, 

2

2 44
t e

r
P AP

R
σ

πλ
=  (2.3) 

Intrinsically Eq. 2.1 and 2.3 are the same, both allowing the 
calculation of the received power from a single target. The scattering 
cross section (σ) is only representative for a single target. However, 
remote sensing radars illuminate an area and observe the σ as a 
collection of scatterers, written as,  

0

o

A
σ

σ =  (2.4) 

where, A0 is the illuminated area [m2] and σo is referred to as the 
backscattering coefficient [m2 m-2 or decibels, dB].  

In this context, the backscattering coefficient (σo) is defined as 
the ratio of the power received by a radar antenna over the power 
that the antenna would have received if target area would be a 
perfectly isotropic (Lambertian) scatterer. As such, the σo represents 
the power losses caused by the target area due to the scattering of 
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radiation away from the sensor and, to lesser extent, the absorption 
of radiation. A flat and lossless surface scatters most radiation away 
from the antenna and produces a low σo response. This type of 
scattering is referred to as specular reflection. Rougher surfaces 
redirect also radiation back towards the antenna and generate a 
larger σo response. Typically, as a surface appears rougher its 
scattering behaviour become more isotropic as is illustrated in Figure 
2-1. The material, shape and size of scatterers with respect to the 
wave properties (e.g. wavelength, polarization, and incidence angle) 
determine whether a target area appears rough.  

Figure 2-1 illustration of scattering patterns under varying surface 
roughness conditions (adopted from Ulaby et al 1982). 

 
Dielectric constant 
The electric permittivity (ε) is a measure for the ability of a 

medium to store an electric charge (capacitance), after which the 
stored energy is reradiated. A medium with a large ε behaves, 
therefore, more as an isotropic scatterer and produces a larger σo 

Coherent component

Incoherent component

Slightly rough surface: scattering 
consists of a coherent and 
incoherent component

Smooth surface: only coherent 
scattering (specular
reflectance).

Rough surface: scattering 
consists of largely of incoherent 
component and approach an 
isotropic scatterer
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response. In electromagnetism, it is common to express the ε relative 
to the electric permittivity of free space (ε0), which is also referred to 
as the relative permittivity or dielectric constant (εr).  

Because the molecular structure of liquid water consists of strong 
dipole bonds, the εr of media with a high moisture content is in the 
microwave portion of the electromagnetic spectrum significantly 
larger than for low moisture contents. Hence, microwave 
observations are sensitive to changes in the water content of both 
soils and vegetation.  

The εr depends, however, also on the strength of the bonds 
between the water and the other molecules in the medium. In soils 
these intermolecular forces are strongly affected by its texture and 
mineral composition. The relationships between the soil texture, 
moisture content and εr have been experimentally determined in 
laboratories, which led to various empirical models referred to as 
dielectric mixing models. The models by Topp et al. (1980), Wang 
and Schmugge (1980) and Dobson et al. (1985) are most commonly 
used in microwave remote sensing. In this thesis conversions from 
the εr into soil moisture have been performed using Dobson’s model. 

Similarly, Mätzler (1994) and El-Rayes and Ulaby (1987) used 
laboratory measurements to establish the relationship between the εr 
and the water content in vegetation. Such information is, however, 
only needed as input for physically based vegetation scattering 
models, which have not been applied for this thesis.  
 

Surface and vegetation geometry 
The surface and vegetation geometry (or vegetation morphology) 

have an important effect on the returned amount of scattering. Both 
the surface and vegetation geometry are extremely irregular under 
natural conditions and difficult to describe mathematically. Physically 
based scattering models need a rigorous description of vegetation 
morphology including the sizes and shapes of the main constituents 
of the canopy (e.g. Lang and Sidhu 1983, Chauhan et al. 1994, 
Ferrazzoli and Guerriero 1995), which is typically not available at a 
large-scale. Within the semi-empirical models applied for the retrieval 
of soil moisture over large domains, the effects of the vegetation 
morphology are embedded within empirical parameters. In this 
thesis, vegetation morphological measurements have not been used. 
Examples of scattering model applications that do use the canopy 
structure as input can be found in Della Vecchia (2007).   

The surface geometry represents surface height variations in the 
horizontal plane induced by components with different spatial scales 
(e.g. Verhoest et al 2008). These surface height variations are 
hereafter referred to as the surface roughness. A full field 
characterization of the surface roughness requires a 2-dimensional 
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mapping of the soil surface. It is, however, more common to record 
only a transect of surface heights and assume that the roughness is 
isotropic in the horizontal plane. Different methods are available for 
measuring the 1-dimensional surface height profile ranging from 
fairly simple grid (or needle) boards to the more sophisticated laser 
profilers (e.g Davidson et al. 2000, Callens et al. 2006).  

A stochastic representation of the surface roughness can be 
derived from the field measured surface height profiles. This 
characterization consists of three parameters: the root mean square 
height (s), autocorrelation length (l) and autocorrelation function 
(ACF).  

The s is defined as the standard deviation of the surface height 
variations represented by, 

( )2

1

1
1

n

i
i

s z z
n =

= −
− ∑  (2.5) 

where, z is the surface height [m], z is the mean surface height 
within the profile [m] and n is the number of samples [#].  

The l is defined as the distance (x’) over which the normalized 
autocorrelation (ρ) becomes less than 1/e (≈0.3678...), whereby the 
normalized autocorrelation is formulated as, 
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( ) ( )

( )

'
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i

z x z x x
x

z x
ρ =

=

+
=
∑

∑
 (2.6) 

where, z(x) is the surface height at point x [m].  
Further, the ACF characterizes the surface roughness spectrum, 

which is often defined as a Gaussian or an Exponential function. The 
expression for the ACF can be found in textbooks, such as Ulaby et al. 
(1982) and Fung (1994). 

Intuitively, soil surfaces whose horizontal dimensions are large 
compared to wavelength may appear smooth to a radar. Conversely, 
large vertical dimensions with respect to the wavelength are 
indicative for a rough surface. Hence, the scattering is more isotropic 
for surfaces with a small autocorrelation length (l) and a large root 
mean square height (s).  

Even though the stochastic analysis of the surface height profiles 
provides a objective means for evaluating the roughness of a surface, 
the direct use of these parameters in surface scattering models is 
often cumbersome. One complicating factor is the scale dependency 
of the surface roughness (e.g. Verhoest et al. 2008). Surface height 
variations much smaller than the wavelength contribute very little to 
the amount of scattering, but they do affect the calculation of the 
roughness parameters. Depending on the wavelength an appropriate 
horizontal resolution should, therefore, be selected for characterizing 
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the surface height profile. Ulaby et al. (1982) propose a horizontal 
resolution smaller than one tenth of the wavelength as a rule of 
thumb, but no exact quantitative criterion exists. Further, studies 
(e.g. Oh and Kay 1998, Callens et al. 2006, Bryant et al. 2007) report 
that the determination of the l and ACF from field measurements is 
affected by the length of the surface height profile.  

As such, it will be difficult to use field measured surface 
roughness parameters as input for a surface scattering model and 
obtain a good agreement with the observed σo. A practical approach 
to the roughness parameterization problem is to fit the roughness 
parameters by matching the observed and simulated σo (e.g. Su et al. 
1997, Mattia et al. 2006). Similar approaches for estimating the 
roughness parameters have been adopted for this thesis, which are 
described in Chapters 5, 6 and 8.  

2.2 Backscatter modeling  
Soil surface scattering 
The soil surface scattering (σo

surf) depends on the soil dielectric 
constant, the surface roughness and the wave properties (e.g 
incidence angle, polarization and wavelength). The basis for all 
scattering problems follows from the Maxwell equations, which 
resemble the conservation of electromagnetic energy in a volume. A 
complete derivation of these equations can be found in textbooks 
such as Ulaby et al. (1982) and Hecht (1998).  

Solving the Maxwell equations requires certain boundary 
conditions. In the special case of a perfectly flat surface Snell’s law 
applies, which states that the angle of the incoming wave equals the 
angle of the outgoing wave.  When assuming a lossless, perfectly 
conducting medium and that the magnetic permeability (μ) is equal 
to that of free space (μ0), the reflection coefficients for the horizontal 
and vertical polarization may be calculated as,  

2
2

2

cos sin

cos sin
i i

h

i i

R
θ ε θ
θ ε θ

− −
=

+ −
 (2.7) 

2
2

2

cos sin

cos sin
i i

v

i i

R
ε θ ε θ
ε θ ε θ

− −
=

+ −
 (2.8) 

where, θi is the incidence angle [degrees], Rp is the p-polarized 
reflectivity [-] and subscripts h and v indicate the horizontal and 
vertical polarization, respectively.  

The equations 2.7 and 2.8 are commonly known as the Fresnel 
reflection coefficients and describe the reflection of a specular 
surface. Over natural land covers, however, the complex surface 
geometry needs be taken into consideration for simulating the σo. 
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Approximations regarding the surface geometry are necessary for 
remote sensing applications. The two most frequently used methods 
are the Kirchhoff approaches and the Small Perturbation Method 
(SPM).  

Within the Kirchhoff approaches, the surface geometry is 
represented by a series of tangent planes (or facets). Then, for the 
scattering from each plane the specular reflection coefficients apply 
(Eqs. 2.7 and 2.8). This assumption limits the applicability of the 
Kirchhoff approaches to surfaces whose horizontal dimensions are 
large compared to the length of the incoming wave (Ulaby et al. 
1982). This means that the correlation length, l, should be large with 
respect to the wavelength and root mean square height, s.  

Although the Kirchhoff concept is fairly straightforward, additional 
simplifications are needed to obtain an analytical solution. The two 
most common assumptions are the stationary phase and the scalar 
approximations, from which the Geometric Optics and Physical Optics 
models follow. The stationary phase approximation implies that 
scattering occurs only along directions for which there are specular 
points on the surface and, thus, the effects of local diffraction (or 
multiple scattering) are excluded. This limits the applicability of the 
Geometric Optics model further to surfaces with large average 
vertical dimensions (or a large s) with respect to the wavelength. 
Conversely, the Physical Optics model applies when the s is small 
compared to the wavelength. Under these surface conditions vector 
formulation of the Kirchhoff fields reduces to a scalar form (see Ulaby 
et al. 1982 and Beckmann and Spizzichino 1963). Hence, this 
approximation is referred to as the scalar approximation.  

For surfaces with a small correlation length, l, with respect to the 
wavelength the Kirchhoff approximation is no longer valid. In the 
case that both the l and the s are small compared to the wavelength 
the Small Perturbation Method (SPM, Rice 1957) is applicable. Within 
the SPM, the surface geometry is assumed to be a superposition of 
the different spectral components and can be transformed in Fourier 
components. Application of this Fourier transformed surface geometry 
to the field equations yields analytical expressions for the σo

surf. 
Validity of the SPM ranges to surfaces with small vertical dimensions 
with respect to the wavelength. 

From the discussion above follows that the Kirchhoff approaches 
and SPM can only be applied to surface with a certain roughness. The 
validity ranges for these three models are provided in Table 2-1. The 
Kirchhoff models are valid for surfaces that appear ‘rough’, the high-
frequency solution, and the SPM model applies to surfaces that 
appear ‘smooth’, the low-frequency solution (Fung and Pan 1987). 
Attempts to unite the two approaches resulted in the development of 
so-called ‘two-scale’ models, which basically model the σo

surf as the 
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sum of the Kirchhoff and SPM solution (Van Oevelen 2000). A 
limitation of the two-scale models is that they are not valid outside 
validity ranges of the Kirchhoff and SPM model. To overcome this 
problem Fung and Pan (1987) and Pan and Fung (1987) adopted an 
integral approach. Later on, Fung et al. (1992) presented this method 
with some modifications as the Integral Equation Method (IEM) 
model.  
 
Table 2-1 Roughness conditions for which the Physical Optics, 
Geometric Optics and Small Perturbation Method surface scattering 
models are considered to be valid (after Van Oevelen 2000). 

 Validity*  
Physical Optics s/l < 0.25 kl>6     l2>2.76sλ 

Geometric Optics (2ks cos θi)2 > 10 kl>6     l2>2.76sλ 
Small Perturbation Model ks < 3, s/l < 0.3 

*k ~wave number (2π/λ) 
 

The complete mathematical derivation of the IEM model is found 
in the literature (Fung et al. 1992 and Fung 1994) and starts from 
expressing the integral equation for the tangential surface electric (E) 
and magnetic (H) field by a Kirchhoff (Ek and Hk) and a 
complementary (Ec and Hc) term. Then, in accordance with the 
Stratton-Chu (Ulaby et al. 1982) integral the far zone scattered fields 
can be expressed in terms of these Kirchhoff and complementary 
tangential surface fields. This yields the coherent Kirchhoff and 
complementary E scattered fields. In the backscattering case, 
however, the power measured mostly consists of incoherent 
scattering, at least at larger off-nadir angles. By subtracting the 
average coherent E field from the average total power the incoherent 
scattering is obtained within the IEM model. Substitution of this 
incoherent power into the radar equation yields analytical expressions 
for the like- and cross-polarization. Fung et al. (1992) show that for 
rough surfaces the IEM model reduces to standard Kirchhoff 
approach, while under smooth conditions the IEM model reduces to 
the SPM solution.  

Intrinsically, this IEM approach poses no restrictions to the 
applicability of the resulting model with respect to the surface 
roughness conditions and frequency (Fung 1994). In the original 
derivation, however, phase differences in the scattered fields were 
assumed to be negligible. As such, the effects of multiple scattering 
are excluded. Multiple scattering occurs when an incident wave is 
scattered to another point on the surface, which is typical for surfaces 
that are rough with respect to wavelength. Hence, the original IEM 
version is also referred to small to moderate ks approximation and its 
validity is defined as 3.0ks < .  
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The original form of the analytical σo expressions for the like 
polarization reads,  

( ) ( )2 22 2 2
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where, k is the wave number (=2π λ ), cosz ik k θ= , sinx ik k θ= , Wn(-

2kx,0) is the nth power Fourier transform of the surface correlation 
function, and fpq and Fpq are the Kirchhoff and complementary field 
coefficients depending on the incidence angle and electromagnetic 
properties of the medium; its mathematical formulations can be 
found in Fung (1994).  

A good agreement between the IEM simulations and laboratory 
measurements was obtained for surface conditions falling within its 
validity ranges (e.g. Mancini et al. 1999 and Macelloni et al. 2000). 
Mancini et al. (1999) found, however, that the simulations 
underestimate the measured σo for surface conditions outside the 
validity range of the IEM (e.g. rough surface, high frequency, large 
incidence angle). This result showed the limitation of the ignoring 
multiple scattering effects. Subsequently improvements to the 
original IEM were made to include these effects (Hsieh et al. 1997, 
Hsieh and Fung 1999, Fung et al. 2002, Chen et al. 2003). The IEM 
model version by Chen et al. (2003) has been applied in this thesis 
for simulating the σo

surf, which has been named the Advanced IEM 
(AIEM) model.  

Despite the IEM is valid for a wide range of surface roughness 
conditions, model validations against σo measurements acquired over 
natural surface have not always been successful (e.g. Altese et al. 
1996). Most difficulties follow from formulating a representative set of 
surface roughness parameters because the surface roughness effect 
on σo is scale dependent. As a result, the use of surface roughness 
measured at a local scale as input for the IEM model can lead to large 
discrepancies between the measured and simulated σo (Bryant et al. 
2007). A derivation of the roughness parameterization from the radar 
measurements itself is, therefore, preferred. For example, multi-
channel σo data sets have been employed for the simultaneous 
retrieval of the surface roughness and soil moisture (e.g. Su et al. 
1997, Van Oevelen and Hoekman 1999, Bindlish et al. 2000, Rahman 
et al. 2007). Also, time series of σo measurements have been utilized 
to identify the roughness effects (e.g. Wagner and Scipal 2000, Wen 
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and Su 2003b). For the soil moisture retrieval applications presented 
in this thesis both approaches have been applied. 

Figure 2-2 Scattering contributions observed over a vegetated 
surface, 1) the surface scattering attenuated by the vegetation cover, 
2) the direct scattering from the canopy, 3) the scattering along the 
soil-vegetation pathways. 

 
Vegetation effects on surface scattering 
The amount of scattering observed over vegetation covered 

surfaces consists of three scattering contributions as schematized in 
Figure 2-2. The first scattering component characterizes the soil 
surface contribution (σo

s), which is the surface scattering attenuated 
by the vegetation cover. Direct scattering from the canopy is 
represented by the second term (σo

v) and the third scattering 
component resembles the scattering along the soil-vegetation 
pathways (σo

s↔v). Both physical and semi-empirical models simulate 
the scattering from vegetation covered surfaces as the sum of these 
individual components according to,  

o o o o
s v s vσ σ σ σ ↔= + +  (2.11) 

In physically-based vegetation scattering (emission) models, the 
scattering and absorption characteristics of the canopy are 
determined based on the dimensions and dielectric properties of 
individual elements (e.g. stems, leafs and cobs) in the canopy. This 
approach is referred to as the discrete medium approach. The 
complex morphological structure of a canopy is represented in models 
by defining the electric field of individual plants components using 
specific approximations regarding the shape. For example, stems can 
be modelled as cylinders using the infinite length approximation 
(Seker and Schneider 1988) and leaves may be represented as discs 
or ellipses using the Rayleigh-Gans (Eom and Fung 1984) or the 
Physical Optics (Le Vine et al. 1983) approximations in case the 
dimensions of the leaves small or large with respect to the 

1 32
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wavelength, respectively. The computation of the backscatter 
coefficient (or emissivity) by a discrete medium model can be based 
on the wave theory (e.g. Lang and Sidhu 1983, Chauhan et al. 1991, 
Chauhan et al. 1994) or on the radiative transfer theory (e.g. Ulaby 
et al. 1990, Karam et al. 1992, Ferrazzoli and Guerriero 1995 and 
Karam, 1997).  

Simulations by these discrete medium models require an 
extensive parameterization of the vegetation morphology. Such 
detailed information is not available for large spatial domains, which 
limits their applicability for large-scale soil moisture retrieval. A more 
practical approach is to describe the effects of vegetation in terms of 
‘bulk’ variables. The most widely used method for describing the 
vegetation scattering effects is the semi-empirical Cloud model 
(Attema and Ulaby 1978). 

The main assumption of the Cloud model is that the absorption 
and scattering characteristics of the canopy are represented as the 
sum of individual particles. Hence, the vegetation layer is considered 
as a volume of identical uniformly distributed scatterers, for which 
the effects of multiple scattering within the canopy are negligible. 
Using these simplifications the direct scattering from vegetation is 
approximated by (e.g. Ulaby et al. 1982, Woodhouse 2006),  

( )2 cos1
2

o v i
v

e

σ θσ γ
κ

= −  (2.12) 

where, σv is the vegetation scattering cross section [m-1], κe is the 
extinction coefficient [m-1] and γ2 is the two-way attenuation 
represented by, 

2 2exp
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with h as the canopy height [m].  
The soil surface scattering contribution is calculated as, 

2o o
s surfσ γ σ=  (2.14) 
Most applications of the Cloud model assume that the higher 

order scattering terms are negligible, which reduces the calculation of 
the total backscatter to, 

( )2 2 cos1
2

o o v i
t surf

e

σ θσ γ σ γ
κ

= + −  (2.15) 

This form of the Cloud model has been widely used for the soil 
moisture retrieval (e.g. Prevot et al. 1993, Bindlish and Barros 2001, 
Wen and Su 2003a) and vegetation properties (e.g. Prevot et al. 
1993, Durden et al. 1995, Maity et al. 2004). For retrieval 
applications, however, estimates for the σv and κe should be obtained.  
Originally, Attema and Ulaby (1978) used the definition of the single 
scattering albedo, being equal to σv/κe, for justifying the 
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representation of the σo
v as a function of an empirical crop dependent 

parameter. Further, they defined the κe as the product of the 
volumetric vegetation water content (expressed in kg m-3) and an 
empirical parameter. In a later study, however, Ulaby et al. (1984) 
concluded that the single scattering albedo may also be proportional 
to the volumetric water content and found that for frequencies larger 
than 8.6 GHz the vegetation scattering and extinction properties can 
also be described as a function of the Leaf Area Index (LAI). A more 
generalized form of the volume scattering and two-way attenuation 
can, thus, be formulated as,  

( )2
11 coso

v iA Vσ γ θ= − ⋅  (2.16) 

with 

2 2exp
cos i

B Vγ
θ

⎡ ⎤⋅= −⎢ ⎥
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 (2.17) 

where A and B are crop dependent parameters that should be 
fitted using field measurements, and V1 and V2 are so-called 
vegetation descriptors.  

In the literature V1 is often taken equal to V2 and a variety of bulk 
variables have been used as the vegetation descriptors (e.g. the 
vegetation water content (W), LAI and Normalized Difference 
Vegetation Index (NDVI)). Moreover, the canopy height is typically 
omitted from equation 2.13 assuming that its effect on the 
attenuation will be included within the calibrated parameter B.  

The selection of the vegetation descriptor used for retrieval 
applications depends strongly on the application. For example, for 
studying the potential of radar for retrieving vegetation biomass, 
physical quantities (e.g. W and LAI) are adopted (e.g. Ulaby et al. 
1984, Durden et al. 1995, Inoue et al. 2002). For soil moisture 
retrieval over large spatial domains, however, it is accustomed to use 
a readily available proxy variable, such as the NDVI (e.g. Bindlish and 
Barros 2001, Wen and Su 2003a). 

Further, also a large variety exists among the complexity of the 
surface scattering model adopted for describing the soil scattering 
contribution within the Cloud model. For example, Ulaby et al. (1984) 
and Prevot et al. (1993) utilize a simple linear relationship between 
the σo

surf and soil moisture content.  De Roo et al. (2001) and Wen 
and Su (2003a) use semi-empirical scattering approaches and the 
IEM model has been included within the Cloud model by Bindlish and 
Barros (2001). Again, the choice of the method used depends on the 
retrieval application. For the retrieval of vegetation characteristics a 
simple linear relationship will probably be sufficiently accurate. In 
case of soil moisture retrieval, however, it is beneficial to use a semi-
empirical and physically based scattering model.  
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In this thesis, the Cloud concept is used to correct the σo 
observation for the vegetation effects in Chapter 5 and the utilized 
implementation is described therein.  
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3 The Noah land model 

3.1 Introduction 
The importance of land surface hydrology on the development of 

weather systems has been widely acknowledged (e.g. Shukla and 
Mintz 1982, Garatt 1993, Koster et al. 2004). Land Surface Models 
(LSM’s) are, therefore, coupled to Atmospheric Circulation Models 
(ACM’s) to characterize the exchange of heat and moisture between 
the land surface and atmosphere (e.g. Chen and Dudhia 2001, Ek et 
al. 2003, Dickinson et al. 2006). Development of the first LSM for an 
ACM dates back to the early 1970’s, which resulted in the ‘bucket’ 
models (Manabe 1969). The structure of those bucket models was 
quite simple and considered only the most basic water balance 
components, such as water storage, rainfall, runoff and evaporation. 
Implementation of more sophisticated physical processes was in 
those days restricted by the available computer power. As the 
computing capacity increased the model structures became gradually 
more sophisticated.  

In the early 1980s, for example, multiple layers and 
thermodynamic components were introduced in the representation of 
the soil column (e.g. McCumber and Pielke 1981, Mahrt and Pan 
1984). Further, throughout the 1980s and in the early 1990’s, the 
land models underwent extensive ‘greening’ leading in a 
comprehensive description of ‘above-ground’ processes (e.g. Sellers 
et al. 1986, Noilhan and Planton 1989, Dickinson et al. 1993). Within 
the development of the Variable Infiltration Capacity (VIC, Liang et al. 
1994), Simple Water Balance (SWB, Koren et al. 1996) and Mosaic 
(Koster and Suarez 1992), the spatial variability within the coarse 
modelling grids of LSM’s (> 50x50 km2) was explicitly addressed. 
More recent developments have focused on introducing explicit 
groundwater reservoirs (e.g. Dai et al. 2003, Koster et al. 2000).  

The Noah LSM coupled to the AGCM systems of National Centers 
for Environmental Prediction (NCEP) has gone through a similar 
evolution and has been used for this thesis. The Noah LSM originates 
from the Oregon State University (OSU) LSM, which includes a 
diurnally dependent Penman approach for the calculation of the latent 
heat flux under non-restrictive soil moisture conditions (Marht and Ek 
1984), a simple canopy model (Pan and Marht 1987), a four-layer soil 
model (Marht and Pan 1984, Schaake et al. 1996) and a Reynolds 
number based approach for determining the ratio of the roughness 
lengths for momentum and heat transport (Zilintinkevich 1995, Chen 
et al. 1997). As a result of a good performance in intercomparison 
projects (e.g. Chen et al. 1996, Chen et al. 1997), the modestly 
parameterized OSU LSM was incorporated in the ACM of the National 
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Centers for Environmental Prediction (NCEP). Being implemented in 
an operational weather forecasting system, the OSU LSM experienced 
continuous developments and was gradually extended to be 
representative for a broad range of land surface conditions, after 
which it was renamed Noah. An overview of the latest changes to 
Noah is documented in Ek et al. (2003), which affect the cold-season 
processes most notably (e.g. frozen soil moisture, snow pack 
process). A schematization of the model structure is shown in Figure 
3-1 and the model physics relevant for this thesis is briefly described 
below. 

 
Figure 3-1 Schematization of the Noah model structure taken from 
http://www.ral.ucar.edu/research/land/technology/lsm.php. 

3.2 Soil Water Movement  
Noah simulates soil water flow through application of Richards’ 

equation, which is derived by substituting Darcy’s Law into the mass 
balance equation and reads, 

( ) ( ) ( )θθ ψθ θ
∂∂ ∂ ∂⎛ ⎞= + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

K
K S

t z z z
 (3.1) 

where, θ is the soil moisture content [m3 m-3], K is the hydraulic 
conductivity [m s-1], ψ is the soil water potential [m], S represents 
the sinks and sources (i.e. rainfall, dew, evaporation and 
transpiration) [m s-1], and t and z represent the time and the vertical 
height [s and m, resp.]. 

Due to the non-linearity of the soil hydraulic functions describing 
the relationship between K, θ and ψ is the numerical solution to Eq. 
3.1 expensive. Noah and various other LSM’s employ, therefore, the 
diffusivity form of Richards’ equation, which allows soil water flow 
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simulations using the soil moisture content as the only prognostic 
variable. The soil water diffusivity is defined as the ratio of the 
hydraulic conductivity over the differential water capacity according 
to, 

( ) ( )
( ) ( )K

D K
C

θ ψθ θ
θ θ

∂= =
∂

 (3.2) 

where, C is the differential water capacity [m-1], D is the soil 
water diffusivity [m2 s-1]  

Substitution of Eq. 3.2 into Eq. 3.1 yields the Richards’ diffusivity 
form,  

( ) ( ) ( )K
D S

t z z z
θθ θθ θ

∂∂ ∂ ∂⎛ ⎞= + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (3.3) 

The first term on the right-hand side of Eq. 3.3 characterizes the 
diffusive flow component driven by the vertical ψ gradient. The 
second term describes the convective flow mechanism forced by 
gravity. Through the gravity induced convective flow, water is 
transported downwards.  The ψ gradient can be pointing downwards 
or upwards depending on the soil moisture profile and, thus, the 
diffusive flow mechanism may also transport water upwards. This 
represents the Noah’s ability to simulate capillary rise. Time-
integration of Eq. 3.3 is obtained by using the numerical scheme 
presented in Kalnay and Kanamitsu (1988), which employs an explicit 
solution when no rain is registered and implicit one for time steps 
with rain. 

Both convective and diffusive flow mechanisms are parameterized 
by the transport coefficients, K and D, which depend on both the soil 
texture and soil moisture content. The empirical soil hydraulic model 
by Campbell (1974) is utilized to parameterize the K-θ and D-θ 
relationships as function of soil texture,  
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+
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D D θθ
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where, bc is an empirical parameter [-], Ks is the saturated 
hydraulic conductivity [m d-1] and θs is the saturated soil moisture 
content [m3 m-3], and Ds is the saturated soil water diffusivity [m2 d-

1], defined by,  

s
s c s

s

D b K ψ
θ

⎛ ⎞
= ⋅ ⎜ ⎟

⎝ ⎠
 (3.6) 

where, ψs is the soil water potential at air-entry [m]. 
Standard in Noah is a soil column of 2 m depth divided over four 

layers of 0.1, 0.3, 0.6 and 1.0 m with increasing thicknesses towards 
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the bottom. Nine soil classes are defined for large-scale applications, 
for which the soil specific hydraulic parameters (e.g. θs, Ks, bc and ψs) 
are obtained from Cosby et al. (1984). These parameter sets are 
listed in Table 3-1. 
 
Table 3-1 Soil parameter sets defined for the 9 soil texture classes 
used within large-scale Noah applications (after Cosby et al. 1984). 

Soil texture class 
θs ψs Ks bc Qtz 

[m3 m-3] [m-1] [m d-1] [-] [-] 
Loamy sand 0.421 0.04 1.22 4.26 0.82 
Silty clay loam 0.464 0.62 0.17 8.72 0.10 
Light clay 0.468 0.47 0.09 11.55 0.25 
Sandy loam 0.434 0.14 0.45 4.74 0.60 
Sandy clay 0.406 0.10 0.62 10.73 0.52 
Clay loam 0.465 0.26 0.22 8.17 0.35 
Sandy clay loam 0.404 0.14 0.39 6.77 0.60 
Organic 0.439 0.36 0.29 5.25 0.40 
Glacial/land ice 0.421 0.04 1.22 4.26 0.82 

Qtz ~ quartz content. 

3.3 Drainage and surface runoff 
Noah calculates drainage at the bottom of the soil column using a 

free-drainage condition and proportional to the K(θ) of the bottom 
layer. Further, surface runoff is generated when the rain intensity 
exceeds the infiltration capacity and is calculated as, 

surf maxR P I= −  (3.7) 
where, Rsurf is the surface runoff [m s-1], P is the rain intensity [m 

s-1] and Imax is the maximum infiltration capacity [m s-1].  
The Simple Water Balance model (Schaake et al. 1996) concept is 

used to determine Imax. By assuming exponential spatial distributions 
for infiltration and rainfall, they arrived at the following expression for 
the Imax,  

( )
( )max

1 exp
1 exp

b

b

D kdt
I P

P D kdt
−⎡ ⎤⎣ ⎦=

+ −⎡ ⎤⎣ ⎦
 (3.8) 

where, Db is the total soil moisture deficit in the soil column [m3 

m-3] and kdt is a constant [-] defined by, 

s
ref

ref

Kkdt kdt
K

=  (3.9) 

where, kdtref and Kref are experimentally determined parameters 
set to 3.0 [-] and 2.0 10-6 [m s-1] (or 0.17 [m d-1]) for large-scale 
simulations, respectively. 
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3.4 Surface Energy Balance 
In general, the surface energy budget can be formulated as,  

4
0s s skinF e T H E Gσ λ− = + +   

with (3.10) 

( )1F S Lα ↓ ↓= − +   

where, H is the sensible heat flux [W m-2], λE is the latent heat 
flux [W m-2], G0 is soil heat flux [W m-2], Tskin is the skin temperature 
[K], α is the albedo [-], es is the surface emissivity [-], σs is the 
Stefan-Boltzmann constant [=5.67 10-8 W m-2 K-4], S↓ and L↓ are the 
incoming short- and longwave radiation [W m-2], respectively.  

The soil heat flux, G0, is calculated following Fourier’s Law using 
the temperature gradient between the surface and the mid-point of 
the first soil-layer,  

( ) ( ) 1
0

skin s
h h

T TTG
z dz

κ θ κ θ −∂= =
∂

 (3.11) 

where, Ts1 is the temperature at the mid-point of the first soil-
layer [K] and κh is the thermal conductivity [W m-1 K-1] specified in 
the following section. 

The sensible heat flux, H, is calculated through application of the 
bulk transfer relationships (i.e. Garratt 1993), written as, 

_air p h skin p airH c C u T Tρ ⎡ ⎤= −⎣ ⎦  (3.12) 

where, ρair is the air density [kg m-3], cp is specific heat capacity 
of dry air [= 1005 J kg-1 K-1], Ch is the surface exchange coefficient 
for heat [-], u is the wind speed [m s-1] and Tp_air is the potential air 
temperature [K].  

The surface exchange coefficient for heat is obtained through 
application of the Monin-Obukhov similarity theory, whereby the ratio 
of the roughness length for momentum and heat transport (kB-1 = 
ln[z0m/z0h]) is determined by the Reynolds number dependent 
formulation of Zilintinkevich (1995). 

Simulation of the latent heat flux, λE, is performed using a 
Penman-based diurnally dependent potential evaporation (Ep) 
approach (Mahrt and Ek 1984), and applying a Jarvis (1976)-type 
surface resistance parameterization similar to the one of Jacquemin 
and Noilhan (1990) to impose soil and atmosphere constraints to 
obtain the actual λE. Assuming equal surface exchange coefficient for 
heat (Ch) and moisture (Cq), the diurnally dependent potential 
evaporation can be written as, 

( ) ( )0

1
n q s

p

R G C u q q
E

ρλ
λ

Δ − + −
=

+ Δ
 (3.13) 
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where, Rn is the net radiation [W m-2], Δ is the slope of the 
saturated vapour pressure curve [kPa K-1], qs and q are the saturated 
and actual specific humidity [kg kg-1].  

The actual λE is calculated as the sum of three components: 1) 
soil evaporation (Edir), 2) evaporation of intercepted precipitation by 
the canopy (Ec) and 3) transpiration through the stomata of the 
vegetation (Et). The linear method by Mahfouf and Noilhan (1991) is 
used to compute the soil evaporation extracted from the top soil 
layer, according to, 

( ) 11
fx

w
dir c p

s w

E f Eθ θ
θ θ
⎛ ⎞−= − ⎜ ⎟−⎝ ⎠

 (3.14) 

where, fc is the fractional vegetation cover, fx is an empirical 
constant taken equal to 2.0; θs is the saturated soil moisture content, 
θw is the soil moisture content at wilting point and θ1 is the soil 
moisture content in the first soil layer [all in m3 m-3]. 

The direct evaporation of rain intercepted by the canopy is 
calculated as,   

( )max

0.5
cmc

c c p cmcE f E=  (3.15) 

where, cmc and cmcmax are the actual and maximum canopy 
moisture contents [kg m-2].  

Further, the evaporation from the root zone through the stomata, 
often referred to as transpiration, is determined following, 

( )( )max

0.5
1 cmc

t c c p cmcE f P E= −  (3.16) 

where, Pc is the plant coefficient defined as, 

8 4

8 4

6.48 10

6.48 10

1

1

h a

air

h a

air

C uP
T

c C uP
c h T

P
R C

−

−

Δ
⋅

Δ
⋅

+
=

+ +
 (3.17) 

where, Pa is the air pressure [kPa], and, 

,min

, , , ,

c
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R
R

LAI R R R R
=  (3.18) 

where, LAI is the leaf area index [m2 m2], Rc,min is the minimum 
stomatal resistance [s m-1], and Rc,rad, Rc,temp, Rc,hum, Rc,soil represent 
sub-optimal conditions for transpiration in terms of incoming solar 
radiation, temperature, humidity and soil moisture, respectively, 
which are formulated as, 
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where, θ(i) is the soil moisture content in the ith soil layer [m3 m-3],  
θc is the critical soil moisture content below which the simulated root 
water uptake and transpiration are reduced [m3 m-3], nroot is the 
number of root zone layers [-], froot(i) is the fraction of the total root 
zone the ith layer represents [-], Rc,min and Rc,max are the minimum 
and maximum stomatal resistance [s m-1], Rgl characterizes the light-
use efficiency of a canopy [W m-2], Topt represents the optimum 
temperature for transpiration [K] and hs is an empirical parameter 
describing the optimal transpiration conditions with respect to the air 
humidity. 

 
Table 3-2 Vegetation parameter sets defined for the 13 land cover 
types used within large-scale Noah applications. 

Land cover type 
nroot Rc,min Rgl Hs z0 
[#] [s m-1] [W m-2] [kg kg-1] [m] 

Tropical Forest 4 150 30 41.69 2.653 
Deciduous Trees 4 100 30 54.53 0.826 
Mixed Forest 4 125 30 51.91 0.563 
Needleleaf-evergreen forest 4 150 30 47.35 1.089 
Needleleaf-deciduous forest 4 100 30 47.35 0.854 
Savanna 4 70 65 54.53 0.856 
Only Ground cover  3 40 100 36.35 0.035 
Shrubs w. perennial 3 300 100 42 0.238 
Shrubs w. bare soil 3 400 100 42 0.065 
Tundra 2 150 100 42 0.076 
Bare soil 3 400 100 42 0.011 
Cultivations 3 40 100 36.36 0.035 
Glacial 2 150 100 42 0.011 

 
In Noah, the parameters, nroot, Rc,min, Rgl, hs and the roughness 

length for momentum transport (z0m) depend explicitly on the 
vegetation type. Thirteen vegetation classes are defined for the entire 
globe, which are given in Table 3-2 along with their predefined 
parameterizations. The other parameters are typically assumed to be 
constant, for which the reader is referred to the references cited 
above.  

Further, the θc and θw are crucial parameters defining the 
transpiration and soil evaporation reduction under soil moisture 
stress. The θc is often taken equivalent to field capacity, which occurs 
when the water in the soil profile is in a hydrostatic equilibrium. In 
soil physics textbooks (e.g. Koorevaar et al. 1983, Hillel 1998) field 
capacity is defined at specific soil water potentials varying from -1.0 
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to -3.3 m depending on the circumstances such as the presence of 
groundwater tables. In hydrology, however, it is also common to 
define field capacity as the soil moisture content at which the flux 
density becomes negligible. In standard Noah applications, θc is 
defined at a drainage flux of 0.5 mm day-1 and wilting point, θw, is 
taken at ψ = -200 m.   

3.5 Soil Heat Flow 
The transfer of heat through the soil column is governed by the 

thermal diffusion equation, 

( ) ( )s h
T TC k
t z z

θ θ∂ ∂ ∂⎛ ⎞= ⎜ ⎟∂ ∂ ∂⎝ ⎠
 (3.20) 

where, κh is the thermal heat conductivity [W m-1 K-1] and Cs is 
the soil thermal heat capacity [J m-3 K-1].  

The layer integrated form of Eq. 3.20 is solved using a Crank-
Nicholson scheme and the temperature at the bottom boundary is 
defined as the mean annual 2 m air temperature, which is specified at 
a depth of 8 m. The top boundary condition is confined by skin 
temperature, which is computed using the surface energy balance. 
For this calculation of the surface temperature the following 
linearization is employed,  

4 4 1 4 skin air
skin air

air

T TT T
T

⎡ ⎤⎛ ⎞−≈ +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (3.21) 

Substitution of Eq. 3.21 into the energy balance equation (Eq. 
3.10) yields the following expression for the surface temperature, 

0 1
434skin air s air

air

F H E GT T T
T

λ ε σ− − −= + −  (3.22) 

The heat flow through the soil column is parameterized by the 
thermal heat conductivity, κh, and capacity, Cs, which depend both on 
the soil texture and soil moisture content. The thermal heat capacity 
is calculated as follows (e.g. McCumber and Pielke 1981), 

s soil soil w w air pC f C f C f c= + +  (3.23) 

where, f is the volume fraction of the soil matrix, and subscripts 
‘soil’, ‘w’, ‘air’ refer to the solid soil, water and air media. In Noah, 
Csoil, cp and Cw are defined as 2.0·106, 1005 and 4.2·106 J m-3 K-1, 
respectively. In reality, Csoil depends also on the soil textural 
properties, but differences in the heat capacity of the soil constituents 
are typically assumed negligible (Hillel 1998) and are, therefore, not 
accounted for in Noah.  

The thermal heat conductivity is calculated (e.g. Johansen 1975, 
Peters-Lidard et al. 1998) as a weighted combination of the saturated 
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(κsat) and dry thermal conductivity (κdry) depending on the degree of 
saturation,  

( )h e sat dry dryKκ κ κ κ= − +  (3.24) 

where, Ke is the Kersten (1949) number representing the degree 
of saturation, 

for  θ /θs > 0.1 log10 1.0e
s

K θ
θ

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 
(3.25) 

for  θ /θs ≤ 0.1 0.0eK =  

The κdry is calculated using a semi-empirical equation,  
0.135 64.7
2700 0.947

d
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d

γκ
γ

+=
−

 (3.26) 

where, γd is the density of dry soil approximated by 
( )1 2700d sγ θ= −  [kg m-3] and κsat depends on the volume fractions of 

the solid particles, frozen and unfrozen soil water in the matrix, 
( ) ( ) ( )1 1

h2o
liqs ice

sat soil ice
θθ θκ κ κ κ− −=  (3.27) 

where, κice and κh20 are the thermal conductivities for ice and 
liquid water [= 2.2 and 0.57 W m-1 K-1, respectively], θice and θliq are 
the frozen and liquid soil moisture contents [m3 m-3] and κsoil is the 
thermal conductivity of the dry soil matrix calculated as a function of 
the volume fraction quartz (qtz), 

( ) ( )1qtz qtz
soil qtz oκ κ κ −=  (3.28) 

where, κqtz and κo are the thermal conductivity of quartz and 
others soil particles, which are set to 7.7 and 2.0 [W m-1 K-1], 
respectively. For standard Noah simulations, the sand fraction is 
taken equivalent to the volume fraction quartz, which is defined for 
each of the nine soil classes and given in Table 3-1.  
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4 Data sets 
Three data sets have been used for the research presented in this 

Thesis.   
One of the data sets for studying the retrieval of soil moisture 

consists of backscatter measured by a truck-mounted scatterometer.  
These measurements were collected during a field campaign covering 
the 2002 corn growth cycle and were performed by NASA’s Goddard 
Space Flight Center (GSFC), George Washington University (GWU) 
and the United States Department of Agriculture Agricultural 
Research Service (USDA-ARS). This data set is hereafter referred to 
as the ‘OPE3 campaign*’.  

The data set used solely for Noah LSM applications has been 
collected at the meteorological station operated by the Royal 
Netherlands Meteorological Institute (KNMI) about two kilometres 
east of Cabauw; hereafter referred to as the ‘Cabauw data set’. 

The third data set has been collected over the central part of the 
Tibetan Plateau, and is used for both soil moisture retrieval and land 
surface modelling. Synthetic Aperture Radar (SAR) acquisitions 
collected by the Advanced SAR (ASAR) onboard the European Space 
Agency’s (ESA’s) Environmental Satellite (EnviSat) is utilized for soil 
moisture retrieval. The validation of Noah LSM simulations is 
performed using the meteorological measurements by the Institute 
for Tibetan Plateau Research Chinese Academy of Science (ITP/CAS). 
This data set will be referred to as the ‘Tibetan data set’.  

These three data sets are described in the text below.  
 

* OPE3 ~ optimizing production inputs for Economic and Environmental 
Enhancements. 

4.1 OPE3 campaign 
Site description  
OPE3 is a multi-disciplinary research project of the United States 

Department of Agriculture - Agricultural Research Service (USDA-
ARS) focusing on issues related to agriculture (Gish et al. 2003). The 
research carried out within this project takes place on a field on the 
grounds of the Beltsville Agriculture Research Center (BARC) near 
Beltsville (Maryland, USA); hereafter referred to as the OPE3 site.  
The climate of this region can be characterized as humid with mild 
winters and hot (and humid) summers. Annual amount of rainfall is 
about 990 mm evenly distributed throughout the year. At this field, 
experiments have been conducted focusing on studying the transport 
of chemicals in the vadose zone, the exchange of water and energy 
between the land surface and atmosphere, and remote sensing 
techniques for retrieving biophysical variables. For more information 
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on the OPE3 project readers are referred to 
http://hydrolab.arsusda.gov/ope3 (verified on: 16 September 2010).  

Figure 4-1 Location of the OPE3 site within the Washington DC area 
with as background is an ASTER (Advanced Spaceborne Thermal 
Emission and Reflection Radiometer) false color composite collected 
June 2002.  
 

The OPE3 site comprises four adjacent watersheds located at an 
elevation of approximately 40 meters above sea level with slopes 
varying from 1 to 4%. During the summers all fields are grown with 
corn, which typically emerges in the beginning of May and is 
harvested in October. The 2002 field campaign took place at the 
northern edge of the test site (see Figure 4-1) as this area is the 
flattest part. In this area, soil texture is classified as sandy loam with 
on average 23.5% silt, 60.3% sand, 16.1% clay and a bulk density of 
1.25 g cm-3.  

 
Scatterometer measurements 
The σo measurements were collected by the NASA/George 

Washington University (GWU) truck-mounted scatterometer starting 
from the emergence of the corn plants on May 10th and ending at the 
harvest on October 2nd. This scatterometer system is capable of 
measuring both the amplitude and phase of backscattered signals at 

Washington DC

N

OPE3 SiteOPE3 Site

Study AreaStudy Area
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X-, C- and L-band (10.0, 4.75 and 1.6 GHz) and at four linear 
polarizations (HH, HV, VV, VH). For each band, a single transmiting-
receiving antenna with a 3 dB beam width of 12 degrees is mounted 
on a 20 m boom. The deployed system has provided reliably 
calibrated measurements across the United States since the early 
1990s (i.e. O’Neill et al. 1996, Chauhan and Lang 1999, Laymon et 
al. 1999). More details on the system itself can be found in O’Neill 
and Chauhan (1992).  

Figure 4-2 Schematization of the experimental setup during the 2002 
OPE3 field campaign. 

 
During the 2002 field operations, quad-polarized C- and L-band σo 

measurements were collected from a boom height of 12.2 m whereby 
the truck was aligned perpendicular towards the corn row orientation. 
Data acquisitions took place once a week (rainy days excluded) 
resulting in a total of 21 days distributed over the corn growth cycle. 
On each acquisition day, σo data was acquired at four nominal times 
(8:00h, 10:00h and 12:00h and 14:00h) and at three incidence 
angles (15, 35 and 55 degrees). The footprints of a single sample are 
estimated to be 2.75, 3.83 and 7.98 m for incidence angles of 15, 35 
and 55 degrees, respectively. Prior to data collection, the 
measurement of the C- and L-band amplitudes was calibrated against 
external targets whose cross sections are known such as a disk and a 
dihedral corner reflector at different angles. An absolute calibration of 
the C- and L-band σo measurements are obtained following the same 
procedure as described in Nesti and Hohmann (1990).  
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The system was programmed to scan the field 120 degrees in the 
azimuth direction and collect sixty independent samples for each data 
run. These independent calibrated samples are averaged to one σo 
value for the study site at each time, for each incidence angle and 
polarization, which is necessary to reduce the effects of Rayleigh 
signal fading caused by the interference of coherent scattering from 
individual objects (e.g. Hoekman 1991, Monakov et al. 1994). The 
effects of the periodic structures imposed by both tillage and corn 
rows are assumed to be smoothed out. The absolute calibration 
accuracy of the averaged σo values is estimated to be lower than 1.0 
dB (O’Neill et al. 1996). Figure 4-2 presents a diagram of this 
experimental setup.  

 
Ground measurements  
Around the periphery of the radar footprints a detailed 

characterization of the land surface conditions took place, which 
included surface roughness, vegetation biomass, and soil moisture 
measurements. The vegetation biomass was quantified once on each 
radar acquisition day via a destructive sampling technique applied to 
a 1 m2 area (about 12 corn plants). By oven drying the plants, the 
water content, fresh and dry biomasses were determined.  In 2002, 
the corn was planted on April 17, the crops emerged around May 4, 
reached peak biomass at July 24 and were harvested on October 2. 
At peak biomass, vegetation water content (W) of 5.1 kg m-2 and a 
crop height of 2.2 meters were measured. After the planting the 
crops, no other tillage operations were undertaken until the harvest 
on October 2. 

 
Table 4-1 Surface roughness parameters derived from the measured 
surface profiles. 

 Along row Across row 
 s [cm] l [cm] s [cm] l [cm] 

Profile 1 1.11 5.18 2.35 8.95 
Profile 2 0.81 6.35 2.46 12.20 
Profile 3 0.95 6.39 1.95 10.75 
Profile 4 0.75 3.22 1.91 8.16 
Profile 5 0.74 4.52 1.68 6.84 

 
Profiles of the surface height variations were characterized at the 

beginning of the campaign (May 2) via photos of the soil surface in 
front of a 2 m long gridded board (see Figure 4-3). A total of ten 
pictures were taken, of which five were collected with the board 
placed along the row direction and the other five with the board in 
the across row direction. These ten surface photos were digitized at 
an approximate horizontal interval of 0.5 cm. From the digitized 
surface height profiles the surface roughness parameters were 
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calculated using Eqs. 2.5 and 2.6, which are listed in Table 4-1. The 
spectral density of surface height variations was found to be best 
represented by an Exponential distribution function for the along row 
direction, while a Gaussian function was found more appropriate for 
the across row direction.  
 

Figure 4-3 The 2 m grid board placed in soil surface for characterizing 
the surface roughness. 
 

The top 6-cm soil moisture was measured using a gravimetric 
sampling technique and a portable impedance probe (Delta-T theta 
probe) at twenty-one sites located at the edge of a 67.0 x 33.5 m 
rectangular area situated around the radar footprints indicated in 
Figure 4-2. Two impedance probe readings were taken per site each 
time the radar collected observations, while the gravimetric sampling 
took place along with the first radar acquisitions of the day. From the 
gravimetric measurements the volumetric soil moisture (θ) is 
determined using the bulk density measured at each site. The 
voltages recorded by the impedance probe are converted to the 
dielectric constant (εr) according to the manufacturer’s instructions 
(Miller and Gaskin, 1999), from which the θ can be determined using,  

0

1

a
a

εθ −=  (4.1) 

where, a0 and a1 are calibration parameters depending on the soil 
texture.  

A generalized calibration provided by the manufacturer yields an 
estimated accuracy of 0.05 m3 m-3. A more reliable impedance probe 
θ can be obtained when the a0 and a1 are fitted against a reference. 
Here, the pair of the gravimetric θ and the mean of the two 
simultaneously collected impedance probe readings have been used 
to fit for each site a specific a0 and a1. This led to a Root Mean 
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Squared Difference (RMSD) of 0.024 m3 m-3 between the gravimetric 
and the impedance probe θ. The site-specific calibration parameters 
have been applied to the mean of two impedance probe readings 
collected each time step.  

 

Figure 4-4 RMSD, bias and correlation coefficients calculated 
between the mean impedance probe θ of the twenty-one sites and 
the θ measured at each site separately. 
 

As the θ is known to be spatially variable (e.g. Famiglietti et al. 
1999, Cosh et al. 2004) also variations can be expected among the 
measurements taken at the different sites. For further analysis of this 
variability, the RMSD, bias and correlation coefficient (ρ) are 
calculated between the mean impedance probe θ of the twenty-one 
sites and the θ measured at a single site, which are plotted in Figure 
4-4. The biases show that on average the θ at the western (sites R1-
R6) and eastern (sites R16-R21) edges are respectively wetter and 
dryer than the mean, while the θ measured along the southern edge 
(sites R7-R15) may over- or underestimate the mean. The obtained 
biases (-0.018 – 0.026 m3m-3) as well as RMSD’s (0.020 – 0.038 
m3m-3) are, however, on the same order of magnitude as the 
calibration accuracy of the impedance probe. The mean θ is, 
therefore, considered to be representative for the radar footprints, 
which is also supported by the high ρ’s (0.90-0.97). The mean θ of 
the twenty-one impedance probe θ values will be used for further 
analysis of the radar measurements. 

Figure 4-5 show the temporal evolution of the mean θ, W and rain 
events measured throughout the campaign. During the campaign rain 
events are temporally well-distributed up to August 2nd resulting in a 
total of 187.9 mm rain. After that, a period of relative drought 
occurred during which the soil dried down to values of 0.016 m3 m-3 
measured on August 21th.  A 50.2 mm rain event on August 27th 
ended this drought leading to a θ of 0.262 m3 m-3 on August 30th, 
which was also the maximum θ measured during the campaign. 
Given reports of saturated θ (θs) of 0.41- 0.44 m3 m-3 for sandy loam 
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soils in the United States (Clapp and Hornberger 1978, Cosby et al. 
1984, Carsel and Parrish 1988), the dynamic range observed during 
campaign covers about 60% of the maximum θ range. This in 
combination with the coverage of the complete corn growth forms a 
solid basis for the evaluation of soil moisture retrieval algorithms, 
which will be further discussed in Chapters 5 and 6. 

 

Figure 4-5 Rainfall, soil moisture, fresh biomass and vegetation 
water content (W) measured throughout the OPE3 field campaign. 
 

4.2 Cabauw data set 
Site description  
Since 1973, the Royal Netherlands Meteorological Institute (KNMI) 

operates a comprehensive atmosphere research program at a site 
about two kilometers east of Cabauw (The Netherlands). This 
meteorological site is well-known for its 213 m high mast (see Figure 
4-6) and the resulting boundary layer research (e.g. Beljaars and 
Holtslag 1991, Ek and Holtslag 2004, Ek and Holtslag 2005). For an 
extensive site description readers are referred to Van Ulden and 
Wieringa (1996) and www.knmi.nl/~bosveld/ (verified on: 16 
September 2010). Specific details relevant for this thesis are briefly 
described below. 

The land cover in the Cabauw area is dominated by dense grasses 
fully covering the soil surface throughout the entire year, which may 
reach typical heights of 0.15-0.20 m during summers. At the 
measuring field, however, the grass is kept at a height of about 0.08 
m. The local scale aerodynamic roughness length for momentum 
transport (z0m) is estimated to be on the order 0.01 m, typical for 
short grasslands (Beljaars et al. 1983). 
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Figure 4-6 The Cabauw meteorological mast (photograph taken on 
December 2008). 
 

A description of the soil properties is provided in Beljaars and 
Bosveld (1997) using field and laboratory analyses reported by Jager 
et al. (1976). The soil profile is characterized as follows; the top 0.03 
m consists of a turf layer; fairly heavy clay is found up to a depth of 
0.60 m; a transition zone from heavy clay to peat characterizes the 
0.60 – 0.75 m layer and below 0.75 m only peat is found. Following 
the Dutch soil classification (Wösten et al. 2001), the upper 0.18 m 
corresponds to the fairly heavy clay class for top-soils (class: B11), 
the 0.18 – 0.75 m layer can be classified as the fairly heavy clay for 
sub-soils (class: O12) and the layer below 0.75 m complies with the 
peat class (class: O16). The soil textural properties of these classes 
are presented in Table 4-2.  

In the Cabauw region, parallel ditches cut the grassland with 
typical distances of 20 to 40 m, in which the water table is kept 
constant at a winter (low) level and a summer (high) level. This 
results in groundwater tables at inland points in the middle of two 
ditches varying from -0.1 m during wet episodes in winters to -1.0 m 
during dry summers.  

The Cabauw data set is used, here, to study the soil water flow 
under dry conditions simulated by Noah. For those simulations, the 
meteorological measurements collected from 1 January through 5 
September 2003 are used to force the model. This period includes the 
2003 European heat wave and consists of a range from wet to dry 
conditions. During the 2003 heat wave, the groundwater table 
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reached levels of -1.8 m in the period from 22 August to 2 
September.  
 
Table 4-2 Soil texture classes and their properties at Cabauw after 
the Dutch soil classification (Wösten et al. 2001). 

Description Class* 
Clay Silt Organic M50** Density 
[%] [%] [%] [μm] [kg m-3] 

Fairly heavy clay B11 35 – 50 - 3 – 15 - 0.9 – 1.7 
Fairly heavy clay O12 35 - 48 - 0 - 3 - 1.0 – 1.5 

Peat O16 - - 40 – 96  0.1 – 0.7 
* Soil type assigned in the Staring Series; 
** M50 ~ median of the particle size of the sand faction. 
 

Atmospheric forcings 
Atmospheric forcings required for Noah simulations are rainfall, 

wind speed, specific humidity, surface pressure, air temperature, 
shortwave and longwave downward radiation. At Cabauw, all these 
forcing variables are measured at a 10 minute interval.  

Precipitation, shortwave and longwave downward radiation are 
measured at a separate field 100 m south of the main mast. Wind 
speed, air and dew temperature observations are obtained by 
instrumentation installed at 10 m height on the mast. Further, 
surface pressure measurements are taken from an automated 
weather station situated 200 m south-west of the main mast. Specific 
details about the instrumentation are provided in Table 4-3.  
 
Table 4-3 Instrumentation used for measuring the atmospheric 
forcings at the Cabauw meteorological station. 

Variables Instrument Accuracy 

Precipitation KNMI rain gauge 0.2 mm 
Shortwave downward 

radiation 
Kipp&Zn CM11 pyranometer Several W/m2 

Longwave downward 
radiation 

Eppley pyrgeometers Several W/m2 

Wind speed KNMI cup-anemometer 0.5 m/s 
Air temperature KNMI Pt500-element 0.1oC 

Dewpoint temperature Vaisala HMP243 0.1oC 
Surface pressure Paroscientific 1016B-01 0.1 hPa 

4.3 The Tibetan data set 
Description of the study area 
The Tibetan study area is a part of the Naqu basin and its location 

is depicted within the Landsat TM false color composite shown in 
Figure 4-7. Elevation in this region is 4500 m above mean sea level 
and the hilltops may reach heights just above 5000 m. Despite the 
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high overall altitude and significant relief in some parts, the terrain in 
the selected study area is fairly smooth with rolling hills. 
Characteristic for the study area are soils with a high saturated 
hydraulic conductivity (Ks = 1.2 m d-1) positioned on top of an 
impermeable rock formation (or permafrost layer). Rain falling on the 
surface runs off rapidly and accumulates in local depressions forming 
lakes and the biotopes for wetland vegetation indicated by the bright 
red colors in Figure 4-7. The land cover in the higher parts of the 
study area can be characterized as grasslands consisting of prairie 
grasses and mosses represented by the gray colors in Figure 4-7. 

Figure 4-7 A Landsat TM false color image (from September 2004) 
indicating the study area and the location of soil moisture stations. 

 
In the winter period from November to April, temperatures in this 

region are generally below freezing point and soil water is 
predominantly frozen. During this period, very little precipitation 
occurs either in liquid or frozen state as snow resulting in soil 
moisture dynamics that are both spatially and temporally stable. 
From April till October, the Asian Monsoon influences the weather, 
which reaches its peak intensity in the months June, July and August. 
In this three-month period, often more than 300 mm of a total 
annual amount of 400 mm rain is measured. The runoff produced by 
the thawing of frozen soil water in upstream areas accumulates in the 
wetlands and increases the soil moisture conditions towards 
saturation. During the monsoon, soil moisture conditions in the 
wetland areas remain relatively stable near saturation due to the 
water supply from upstream areas. In the grasslands, soil moisture 
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conditions depend on antecedent rainfall and may vary between 
saturated and residual soil moisture contents. As grasslands and 
wetlands coexist in the landscape within spatial scales of several 
kilometers, the differences in their soil moisture dynamics impose a 
large spatial variability across the study area. 

 
Table 4-4 List of atmospheric variables measured at Naqu station 
that have been used for this thesis. 

Variables Instrument Height  
Measurement 
uncertainty 

Air pressure PTB220C, Vaisala + 1.5 m ±1hPa 
Incoming and 

outgoing, longwave 
and shortwave 

radiation 

CM21, Kipp & 
Zonen 

+ 2.0 m ±0.5% at 200C 

Wind speed WS-D32, Komatsu
+ 1.0 m, +5.0 

m, + 8.2 m 
±0.8m/s    u<10m/s 
±5%         u>10m/s 

Humidity HMP-45D, Vaisala 
+ 1.0 m, + 8.2 

m 
±3% 

Air temperature TS-801(Pt100), 
Okazaki 

+ 1.0 m, + 8.2 
m 

±3% 

Soil heat flux MF-81,EKO -0.10 m ±5% 

Soil temperature Pt100, Vaisala 

Surface, -0.05 
m, -0.10 m, -
0.20 m, -0.40 

m 

± 0.5 0C 

Soil moisture 
10 cm ECH2O 

probe, decagon 
devices 

-0.05 m, -0.20 
m 

0.029 cm3cm-3 

 
Ground measurements  
Located about 20 km southwest of Naqu city is one of the key 

meteorological stations within a meso-scale network installed as a 
part of Global Energy and Water cycle Experiment (GEWEX) 
supported field campaigns; hereafter referred to as Naqu station. At 
Naqu station, a comprehensive set of instruments measures water 
and energy exchanges between the land surface and atmosphere 
(e.g. Ma et al. 2006, Van der Velde et al. 2009). This set consists of 
instrumentation capable of measuring atmospheric variables at 
different levels (e.g. wind speed, humidity and temperature), 
incoming and outgoing (shortwave and longwave) radiation, turbulent 
heat fluxes, soil moisture at depths of 0.05 and 0.20 m, and 
temperatures in the soil profile up to a depth of 0.40 m. All variables 
are recorded at a 10 minute interval and Table 4-4 lists the variables 
used for evaluating the performance of the Noah land model.  
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Figure 4-8 Photographs of the landscape within proximity of the soil 
moisture stations taken on 18 July 2006. 

 
To further complement this surface energy and water budget 

characterization, four additional soil moisture stations were installed 
within 10 km from Naqu station during the 2006 summer (16 – 27 
July, 2006). The soil moisture stations have been placed north, south, 
west and east of Naqu station as is shown in Figure 4-7. Besides 
additional soil moisture instrumentation was also installed at Naqu 
station itself. Grasslands dominate the land cover at the north, west, 
east and Naqu stations and south station is located at the edge of a 
wetland. An impression of the local conditions is given by the 
photographs presented in Figure 4-8. 

The instrumentation used for these stations consists of EM5b data 
loggers and 10-cm long ECH2O (type: EC-10) impedance probes both 
manufactured by Decagon Devices. At each station, probes have been 
installed horizontally at depths of 2.5, 7.5, 15.0, 30.0 and 60.0 cm. 
The EM5b loggers take a measurement every minute, which are 
averaged to values at preset intervals. Due to limitations in the 
loggers’ storage capacity and accessibility of the study area, soil 
moisture values were recorded at noon and nighttime.  

Naqu station

North station East station

West station South station
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Figure 4-9 Comparison of soil moisture determined gravimetrically 
against in ECH2O probe readings. 

 
During the period 16-27 July 2006, however, the loggers were set 

to record readings every 30 minutes. On eight days within this 
episode, soil samples were taken near each station to determine the 
soil moisture content gravimetrically. This gravimetric soil moisture is 
plotted in Figure 4-9 against to the ECH2O readings for the mineral 
soils. A well-defined linear relationship is noted between 
gravimetrically determined and impedance probe soil moisture 
resulting in a RMSD of 0.029 m3 m-3. This relationship has been 
utilized to calibrate ECH2O readings at a 2.5 cm soil depth, which are 
used for the analyses of the ASAR measurements presented in 
Chapters 7 and 8. 

Unfortunately, the measurements at the 2.5 cm were not 
recorded at west and south stations over the period July 2006 till 
September 2007. West station had been completely destroyed. 
Further, the logger at south station was severely affected by 
corrosion resulting in an unreliably fluctuating soil moisture values at 
2.5 cm. The data from probe installed at a 7.5 cm soil depth was, 
however, reliably retrieved.  

Calibrated soil moisture values from 2.5 cm probes at naqu, north 
and east stations and from the 7.5 cm probe of south station are 
plotted in Figure 4-10 for period 2005 through 2007. This figure 
shows that the soil moisture time series at the grassland locations 
has a clear relationship with the precipitation amounts. For example, 
an episode with lower rainfall amounts in 2006 coincides with a 
decrease in the soil moisture. Similar relationship between the soil 
moisture and precipitation can also be observed in 2005 and 2007. As 
expected, however, the soil moisture dynamics recorded at the 
wetland location is different, which is characterized by wet and 
relatively stable conditions during monsoon, and abrupt 
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increase/decrease of the liquid moisture content at the onset of 
spring/winter. 

Figure 4-10 Soil moisture measured at a 2.5 cm soil depth at Naqu, 
east and north stations and at a 7.5 cm soil depth at south station 
over period 2005 through 2007 and rainfall amounts collected at 
Naqu station. 

 
Calculation of heat fluxes  
From the measurements collected at Naqu station the surface 

energy budget components can be derived.  
Fourier’s Law (Eq. 3.11) has been used to reconstruct the soil 

heat flux (G0) from the temperature gradient between the soil surface 
(skin temperature) and the soil layer at 0.05 m depth (the first 
temperature measurement). Application of this approach requires 
formulation of the thermal heat conductivity, κh, which depends on 
the soil constituents, such as quartz and organic matter contents. 
Although generic formulations for the κh has been developed (e.g. 
Eqs. 3.24-3.28), Hillel (1998) points out that the κh depends also on 
the spatial arrangement of soil particles.  

Given the rather specific conditions on the Tibetan Plateau, κh 
under the initial soil moisture conditions of a specific period is derived 
from the measured soil heat flux at a 0.10 m soil depth (G10) and the 
soil temperature gradient. For the following time steps, the κh is 
extrapolated using the measured soil moisture and this initial κh 
following,   

( ) ( )
2

i
h h i h oκ θ κ θ θ κ= + −  (4.2) 

where, sub- and superscript i refer to the initial conditions of the 
selected period.  

The availability of the turbulent heat fluxes measured by the eddy 
correlation (EC) instrumentation at Naqu station is unfortunately 
limited. The sensible (H) and latent heat (λE) fluxes have, therefore, 
been computed using the Bowen Ratio Energy Balance (BREB)–
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method (i.e. Perez et al 1999, Pauwels and Samson 2006), whereby 
the Bowen Ratio (β) is defined as, 

1 2

1 2

air air

air air

T TH
E e e

β γ
λ

−= =
−

 (4.3) 

where, e is vapor pressure [kPa], subscripts air1 and air2 indicate 
the first and second atmospheric level, respectively, and γp is 
psychrometric constant [kPa K-1] defined as,  

0.622
p a

p
v

c P
γ

λ
=

⋅
 (4.4) 

where, Pa is the air pressure [kPa] and λv is the latent heat of 
vaporization [= 2.5·106 J kg-1]. 

Once the β has been determined from the air temperature and 
vapor pressure profiles measurements, the λE and H can be 
calculated using, 

0

1
λ

β
−=
+

nR GE  (4.5) 

( )01
β

β
= −

+ nH R G  (4.6) 

The β has been computed using the air temperature and vapor 
pressure measurements at levels of 1.0 m and 8.2 m. As BREB-
method has a limited validity when β approaches -1.0, latent and 
sensible heat fluxes derived from β values between -1.3 and -0.7 
have been omitted from the data analysis (e.g. Perez et al. 1999, 
Pauwels et al. 2008).  

 
ASAR observations  
The Advanced SAR (ASAR) onboard the ENVISAT is able to collect 

C-band (5.331 GHz) σo measurements in different imaging modes. 
Depending on the selected mode, either single polarized (HH or VV) 
can be obtained at resolutions of 1000, 150 and 25 m or dual 
polarized (HH/HV, VV/VH or HH/VV) observations can be acquired at 
a 25 m resolution. In the Wide Swath (WS) mode, single polarized 
σo’s are measured at a 150 m spatial resolution over a swath width of 
400 km covering a 16-43 degrees view angle range. The analyzed 
ASAR WS images have been requested in the VV polarization and 
delivered as ellipsoid geocoded level 1b products with a grid spacing 
of 75 m. The Tibetan data set includes 150 scenes acquired from April 
2005 through September 2007, of which 101 and 49 scenes have 
been obtained in an ascending and a descending orbit, respectively. 
In the ascending and descending orbits, ASAR acquires 
measurements at 22:00 p.m. and 10:00 a.m. Beijing Standard Time 
(BST), respectively. 
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Figure 4-11 Schematization of the processing steps for deriving 
radiometrically terrain corrected σo observations from the ASAR WS 
images. 
 

Prior to derivation of the σo observations, the ascending and 
descending scenes have been geo-registered separately and 
resampled to a 100 m spatial resolution using a nearest neighbour 
algorithm. Based on the 90 m resolution Digital Elevation Model 
(DEM) from Shuttle Radar Topography Mission (SRTM), the terrain 
elevation angle has been computed for the ascending and descending 
view geometries. Radiometrically terrain corrected σo observations 
have, then, been derived following ASAR product handbook (available 
at: http://envisat.esa.int/handbooks/asar) by using the local 
incidence angle. A schematization of these processing steps is 
presented in Figure 4-11 and Figure 4-12 shows subsets of several 
processed ASAR WS images.  

ASAR WSM observations

Co-location descending images 
and resampling to a 100 m 

resolution

Co-location ascending images 
and resampling to a 100 m 

resolution

Determination of local incidence angle

Derivation of backscatter coefficient (σo)

Co-location descending and 
ascending images

90-m resolution 
SRTM DEM
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Figure 4-12 A selection of processed ASAR WS image subsets 
acquired over the study area in the period between May and 
September 2005. 

 
The requested WS products have been processed to multi-look 

images with an equivalent number looks (ENL) of 12 (Zink et al. 
2002). Based on comprehensive internal and external calibration 
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loops, the absolute calibration accuracy is estimated to be less than 
1.72 dB with a temporal stability of less than 0.42 dB (Buck et al. 
2000). Because of the multi-look processing chain no additional 
speckle filter has been applied to the processed WS products.  
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5 Effects of a corn canopy on C- and L-band 
backscatter  

 
This chapter is based on: 
Joseph, A.T., van der Velde, R., O’Neill, P.E., Lang, R.H., Gish, T., 2008, “Soil 

moisture retrieval during a corn growth cycle using L-band (1.6 GHz) 
radar observations”, IEEE Transactions on Geoscience and Remote 
Sensing, 46, pp. 2365-2374. 

Joseph, A.T., van der Velde, R., O’Neill, P.E., Lang, R.H., Gish, T., 2010, 
“Effects of a corn canopy on C- and L-band radar backscatter: a 
correction method for soil moisture retrieval”, Remote Sensing of 
Environment, 114, pp. 2417-2430. 

 

5.1 Introduction 
The semi-empirical Cloud (Attema and Ulaby 1978, Ulaby et al. 

1984, Prevot et al. 1993, Taconet et al. 1994, Bindlish et al. 2001) 
and empirical change detection approaches (Moran et al. 2002, Oldak 
et al. 2003, Njoku et al. 2002, Narayan et al. 2006) are often used 
within active microwave soil moisture retrieval applications. With the 
application of empirical change detection approaches, scattering 
induced by vegetation is assumed to be time-invariant, which 
restricts its application to observations acquired over time intervals 
with limited vegetation growth. The Cloud model assumes that a 
canopy can be represented by a Cloud of water droplets and higher 
order scattering contributions are negligible. Changes in biomass are 
taken into account by changing the density of the water droplets. The 
vegetation effects on the observed backscatter coefficient (σo) are 
described via two mechanisms: 1) attenuation of the soil surface 
scattering component and 2) scattering of elements (e.g. leaves, 
stalks and branches) within the vegetation layer. Implementations of 
the Cloud approach parameterize both mechanisms as a function of 
(an) empirical parameter(s) and (a) ‘bulk’ vegetation variable(s), 
such as the Leaf Area Index (LAI, e.g. Prevot et al. 1993), and/or 
vegetation water content (W, e.g. Ulaby et al. 1984 and De Roo et al. 
2001).  

A consequence of this modeling concept is that in the limit of 
dense vegetation the modeled σo is only a function of the vegetation 
scattering component and the contribution of soil surface scattering 
becomes negligible. The soil moisture sensitivity of the Cloud 
approach becomes under dense vegetation very small. In reality, 
however, radar observations display a much higher soil moisture 
sensitivity over dense vegetation because of microwave scattering 
along the soil-vegetation pathways (e.g. Chiu and Sarabandi 2000, 
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Stiles et al 2000, Cookmartin et al. 2000 and Macelloni et al. 2001). 
These higher order scattering terms are not included in the Cloud 
approach. De Roo et al. (2001) extended the Cloud concept by 
including first and second order scattering components, but found for 
soybeans that the contribution of these modeled scattering 
components to the total modeled σo is negligible.  

In this chapter, the effects of corn on C- and L- band radar 
measurements are analyzed for the growth cycle monitored during 
the OPE3 field campaign, which has been described in Section 4.1. An 
alterative method is presented to correct radar measurements for the 
effects of a corn canopy, which is subsequently applied for the 
retrieval of soil moisture. The resulting retrievals are compared to soil 
moisture retrieved with the Cloud approach and validated against in-
situ measurements. Further, the potential application of this method 
to larger scales is discussed. 

5.2 Surface scattering 
Before the vegetation effects on the radar measurements can be 

analyzed the surface scattering component must be known. For this 
purpose, the AIEM scattering model described in Chen et al. (2003) is 
employed. Similar to its original version, the AIEM simulates the σo 
from bare soil surfaces based on the input of soil dielectric properties 
and surface roughness parameters. Here, the surface roughness 
parameters, s and l, are inverted from the four radar measurements 
acquired on May 10th, while assuming an ‘exponential’ correlation 
length function. On this day, the land surface was almost a bare soil 
with a vegetation water content (W) of 0.006 kg m-2 and the soil 
moisture was on average 0.18 m3 m-3. Using the soil texture and soil 
moisture measured during the four radar acquisitions, the complex 
dielectric constant is calculated with the Dobson et al. (1985) mixing 
model.  

As shown in Figure 4-2, the footprints of the three incidence 
angles are different and, thus, the surface roughness in these 
footprints can be expected to be different. Moreover, the impact of 
the periodic structure of the tillage rows on σo measurements may be 
different for HH and VV polarization (e.g. Beaudion et al. 1990, Zribi 
et al. 2002). Champion and Faivre (1996) conclude, however, that 
backscattering from eroded rows as shown in Figure 4-3 behaves 
similarly as isotropic surfaces. An effective roughness 
parameterization may, therefore, be used to estimate the surface 
scattering component, which has been done for many previous 
applications (i.e. Zribi and Dechambre 2002, Baghdadi et al. 2004, 
Zribi et al. 2006). For these reasons, different roughness 
parameterizations are derived for each of the three incidence angles 
and two polarizations. The resulting s and l parameters are given in 
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Table 5-1 along with the RMSD computed between the AIEM 
simulated and measured σo.  

 
Table 5-1 Surface roughness parameters inverted from backscatter 
measured over bare soil conditions and assuming an Exponential 
ACF. 

Band Pol. 
Angle s l RMSD 

[degrees] [cm] [cm] [dB] 

C-band 

HH 
15 0.65 9.54 0.93 
35 0.73 9.79 0.83 
55 0.82 11.05 1.04 

VV 
15 0.42 10.96 0.08 
35 0.45 10.65 0.75 
55 0.35 10.18 0.95 

L-band 

HH 
15 0.42 9.85 0.84 
35 0.61 9.60 0.47 
55 0.46 10.05 0.39 

VV 
15 0.46 9.92 0.87 
35 0.68 12.84 0.51 
55 0.38 10.16 0.09 

 
The obtained RMSD’s are on the same order of magnitude as the 

radar measurement uncertainty. Compared to roughness 
measurements in Table 4-1, however, the retrieved roughness values 
are somewhat small. As is indicated above, the surface roughness is 
treated in this case as an effective parameterization and, also, its 
influence on the radar measurements is affected by the view angle 
and the wavelength (Ulaby et al. 1986). It is, therefore, difficult to 
interpret the validity of the retrieved roughness based on the values 
derived from measurements. 

In this chapter, the surface roughness parameters inverted from 
the σo measured at the start of the campaign are used to evaluate 
the surface scattering component and retrieve soil moisture for the 
entire campaign. This implicates that the surface roughness is 
assumed to be temporally stable; an assumption frequently adopted 
for soil moisture retrieval applications (i.e. Verhoest et al. 1998, 
Narayan et al. 2006, Moran et al. 2002, Thoma et al. 2006, Alvarez-
Mozos et al. 2006). However, it is well understood that due to 
environmental conditions (e.g. rainfall and wind) and agricultural 
practices the surface roughness may change.  

Zobeck and Onstad (1987) and Jackson et al. (1997) conclude 
that rainfall has a considerable impact on the surface roughness, 
while the surface roughness measurements reported in Callens et al. 
(2006) show that the change in surface roughness due to rainfall is 
only significant when the field has recently (within a few days) been 
tilled. During the OPE3 campaign, the field was not tilled after the 
corn crops were planted on April 17th, which was almost four weeks 
before the first radar observation on May 10th. In the period from 
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April 17th to May 10th, 87 mm of rain was measured at the OPE3 site, 
which smoothed the ploughed soil surface. Thus, based on the 
conclusions drawn by Callens et al. (2006), the use of a time-
invariant roughness parameterization can be justified. Impact of this 
assumption on the soil moisture retrievals will be further discussed in 
Chapter 6.  

Figure 5-1 Daily averaged C-band σo measurements and AIEM 
forward simulations over the corn growth cycle. Subplots a), b), c) 
show the result for the HH polarization and incidence angle of 15, 35 
and 55 degrees, respectively.  Subplots d), e), f) show the results for 
the VV polarization and the same incidence angles. 

5.3 σo measurements vs. AIEM simulations 
The AIEM surface scattering model has been used to simulate the 

bare soil σo for the complete field campaign with input of the 
roughness parameters in Table 5-1 and the measured soil moisture. 
These simulated AIEM σo values are averaged for each radar 
acquisition day and are plotted against time along with the daily 
averaged σo measurements. Figures 5-1 and 5-2 show the results for 
C- and L-band, respectively. Further, the ratio of the AIEM simulated 
and measured σo is presented in each plot to indicate how differences 
between the simulations and measurements, and the effects of 
vegetation evolve over time.  
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The two figures show that the AIEM σo matches the 
measurements at the beginning of the campaign. This is expected 
because the land surface is virtually a bare soil surface. For the 35 
and 55 degrees incidence angles, the AIEM σo remains in close 
agreement with the measured C- and L-band σo up to June 5th (W = 
0.2 kg m-2). The C- and L-band σo measured at a later date and 
larger biomass is, however, systematically larger than the AIEM σo. 
The measured σo increase can be ascribed to an increased amount of 
scattering from the canopy directly and from the soil-vegetation 
pathways, while the overlaying vegetation cover attenuates the 
surface scattering component (e.g. Chauhan et al. 1994, Stiles and 
Sarabandi 2000, Macelloni et al. 2001). This indicates that, at 
incidence angles of 35 and 55 degrees, the C- and L-band scattering 
induced by the corn canopy (with W > 0.2 kg m-2) is dominant over 
the attenuated soil return.  

Figure 5-2 Same as Figure 5-1 except that the results for L-band are 
shown. 
 

At both C- and L-band, the largest differences between the 
measured and AIEM σo are obtained for the HH polarization and the 
55 degrees incidence angle, while the smallest differences are noted 
for the VV polarization and 35 degrees incidence. These differences 
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appear overall to be smaller for C- than for L-band. A full analysis of 
the individual scattering contributions by means of a physically based 
scattering model reaches beyond the scope here. It is, however, 
commonly understood that the attenuation of the soil return by 
vegetation is larger for VV polarization and at smaller wavelengths 
(e.g. Mattia et al. 2003a, Brown et al. 2003). This explains the 
smaller σo differences between the measurements and simulations 
when comparing VV versus HH polarization, and C- versus L-band. In 
addition, Stiles et al. (2000) have reported on a larger amount of 
direct vegetation scattering simulated by a physically based 
vegetation scattering model at larger incidence angles. This supports 
the larger differences noted between the measured and AIEM σo at 55 
degrees than at 35 degrees, which can also be explained by the 
larger vegetation volume observed from larger incidence angles. 

Despite the attenuation of the soil return and scattering by 
vegetation, the measured σo response to soil moisture is notable even 
when the canopy is at peak biomass (compare Figure 4-5 with 
Figures 5-1 and 5-2). Previous investigations (e.g. Lang and Sidhu 
1983, Chauhan et al. 1994, Macelloni et al. 2001) have shown that 
under densely vegetated conditions the scattering along soil-
vegetation pathway may become significant.  This higher order 
scattering term includes also soil (moisture) information (e.g. Stiles 
et al. 2000, Chiu and Sarabandi 2000) and explains the observed σo 
sensitivity to soil moisture. As a result, the ratio of the AIEM σo over 
measured σo has a slight increasing trend for W values larger than 
3.0 kg m-2.  

At the 15 degrees incidence angle, the temporal evolution of σo 
measurements with respect to the AIEM simulations follows a 
different pattern. The C-band σo measurements drop below the AIEM 
simulations just after the corn plants have emerged and remain lower 
for almost the entire duration of the campaign. These deviations 
between the measured and AIEM σo are larger for the VV than for the 
HH polarization. Mattia et al. (2003a) and Brown et al. (2003) made 
similar observations over wheat canopies. They concluded that the 
measured σo mainly consists of an attenuated soil return. This is 
supported by a model investigation of Cookmartin et al. (2000). Their 
simulations showed that a canopy may attenuate the soil scattering 
component, while the contribution of the direct vegetation scattering 
component is small. It can, thus, be concluded based on these 
previous reports that the C-band σo measured at a 15 degrees 
incidence over corn is dominated by an attenuated soil return and the 
VV attenuation by vegetation is larger than for the HH polarization.  

The L-band σo at a 15 degrees incidence behaves similarly, but to 
a lesser extent. The AIEM σo is only significantly larger than the 
measured σo on June 5th and 12th (W = 0.2 and 0.6 kg m-2, 
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respectively). This is explained by the fact that the longer L-band 
microwaves are less attenuated by vegetation.  

Figure 5-3 The σo
surf/σ

o for C-band plotted against the vegetation 
water content (W). a), b), c) show the result for the HH polarization 
at incidence angles of 15, 35 and 55 degrees, respectively.  d), e), f) 
show the results for the VV polarization at the same incidence 
angles.  

5.4 Vegetation correction  
The previous discussion has shown that throughout the corn 

growth cycle both an attenuated soil return and vegetation scattering 
can dominate the measured σo. The latter scattering mechanism is 
more important at 35 and 55 degrees incidence angles and vegetated 
conditions (W > 0.2 kg m-2), while attenuation is more pronounced in 
C-band VV σo measured at a 15 degrees incidence angle and over 
sparse vegetation (W < 0.2 kg m-2). Somewhat surprising is, 
however, that even at peak biomass (W > 3.0 kg m-2) the σo 
measured in each antenna configuration displays some sensitivity to 
soil moisture. This σo response to soil moisture under densely 
vegetated conditions can be ascribed to scattering along the soil-
vegetation pathway. Ideally, a soil moisture retrieval algorithm takes 
these higher order scattering mechanisms into account. Physically 
based vegetation scattering models (e.g. Lang and Sidhu 1983, 
Karam et al. 1992, Ferrazzoli and Guerriero 1996) are able to 
simulate the soil-vegetation scattering contributions. This type of 
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modeling requires, however, a rigorous description of the vegetation 
morphology, which is typically not available at regional (or larger) 
scales.  

Figure 5-4 Same as Figure 5-3 except that the results for L-band are 
shown. 

 
Therefore, soil moisture retrieval over vegetation covered surfaces 

is often based on the semi-empirical Cloud model (e.g. Attema and 
Ulaby 1978, Bindlish and Barros 2001, Alvarez-Mozos et al. 2006), 
which assumes a negligible scattering contribution from the soil-
vegetation pathways as shown in,  

2o o o
s vσ γ σ σ= +  (5.1) 

where, σo
s is the soil surface scattering, σo

v is the vegetation 
scattering contribution and γ2 is the two-way attenuation. 

As described in Section 2.2, the Cloud model represents the 
canopy as a slab of identical uniformly distributed scatterers and 
approximates the σo

v and γ2 as (e.g. Ulaby et al. 1982),  

( )2
11 coso

v iA Vσ γ θ= − ⋅  (2.16) 

with 

2 2exp
cos i

B Vγ
θ

⎡ ⎤⋅= −⎢ ⎥
⎣ ⎦

 (2.17) 

where, A and B are crop dependent parameters specific for each 
antenna configuration, and V1 and V2 are so-called “vegetation 
descriptors”.  
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Based on the observations in the previous section, an alternative 
method is proposed for correcting σo for the effects of vegetation. 
This method is based on the concept that for a specific antenna 
configuration the ratio of the soil surface scattering over the 
measured σo (σo

surf/σo) is primarily influenced by vegetation biomass; 
hereafter referred to as the ratio method. Relationships between the 
ratio and biomass are described, here, as a function of the W. Figures 
5-3 and 5-4 present these relationships for C- and L-band, whereby 
the σo

surf is represented by AIEM simulations with the measured soil 
moisture and surface roughness parameters of Table 5-1 as input. 

Then, the following equation is used to describe the σo
surf/σo in 

terms of the W,  

( )2 exp
o
surf

o a W bW
σ
σ

⎡ ⎤= + −⎣ ⎦
 (5.2) 

where, a and b are crop dependent parameters specific for each 
antenna configuration [m2 kg-1]. 

The first term on the right-hand side of Eq. 5.2 assures an σo
surf/σo 

increase under densely vegetated conditions. As such, this term can 
account for the increasing trend of σo

surf/σo at W values larger than 
3.0 kg m-2 observed in Figures 5-1 and 5-2. The second term 
accounts for the σo

surf/σo decrease from sparse vegetation to densely 
vegetated conditions when vegetation scattering is the dominant 
mechanism.  

At C-band, however, the σo measured at 15 degrees is dominated 
by an attenuated soil return. As a result, the ratio is systematically 
larger than 1.0. At low W values, this cannot be reproduced by Eq. 
5.2, which is, therefore, modified for the 15 degrees incidence angle 
as follows, 

( )2 exp
o
surf

o a W bW c
σ
σ

⎡ ⎤= + − +⎣ ⎦
 (5.3) 

where, c is crop dependent parameter specific for each antenna 
configuration.  

Eq. 5.2 has been fitted through the data points of Figures 5-3 and 
5-4 obtained for 35 and 55 degrees using a least squares 
optimization algorithm for minimizing the RMSD between the 
simulated and measured σo. Similarly, both Eqs. 5.2 and 5.3 have 
been applied to the C-band 15 degrees σo

surf/σo. The resulting fits are 
shown in Figures 5-3 and 5-4, and Table 5-2 presents the parameters 
as well as the RMSD’s between the simulated and measured σo. The 
RMSD’s in Table 5-2 are smaller than 1.71 dB. Given an estimated 
absolute calibration accuracy of < 1.0 dB, the ratio method provides 
reasonable estimates of the measured σo. The obtained differences 
between the simulated and measured σo follow from the scatter noted 
among the points in Figures 5-3 and 5-4. This scatter can be 
attributed to the different sources of uncertainty inherent to the 



Effects of corn on C- and L-band backscatter  

 54 

σo
surf/σo estimation. For example, the surface roughness is assumed 

to be constant; the measured soil moisture and W are assumed to be 
representative for the footprint; and the radar measurements include 
calibration uncertainties. In an absolute sense, the impact of these 
uncertainties on σo

surf/σo will be higher when its value is larger. 
Therefore, the largest scatter in Figures 5-3 and 5-4 is noted for 15 
degrees because at this angle the σo

surf is largest as compared to the 
measured σo.  

 
Table 5-2 Vegetation parameters for σo simulation and soil moisture 
retrievals with the ratio method obtained through calibration, and 
RMSD’s computed between the simulated and measured σo. In 
parenthesis are the vegetation parameters, RMSD’s obtained by the 
ratio method using Eq. 5.2.  

Band Pol. 
Angle a b c RMSD 

[degrees] [m4 kg-2] [m2 kg-1] [-] [dB] 

C-band 

HH 
15 

0.047 
(0.049) 

0.446 
(0.106) 

0.503 1.59 
(1.91) 

35 0.0191 0.9309 - 1.18 
55 0.0072 1.3012 - 1.53 

VV 
15 

0.057 
(0.038) 

0.329 
(0.049) 

0.610 1.71 
(2.09) 

35 0.0225 0.3770 - 1.36 
55 0.0105 0.6096 - 1.62 

L-band 

HH 
15 0.0115 0.1332 - 1.57 
35 0.0173 0.8980 - 1.20 
55 0.0033 2.2624 - 1.77 

VV 
15 0.0028 -0.0318 - 1.26 
35 0.0211 0.4812 - 0.96 
55 0.0096 1.2902 - 1.27 

 
Although the σo calculations using the ratio method are 

reasonable, a true appreciation of its performance is difficult solely 
based on Table 5-2. A comparison is, therefore, made against σo 
simulations by the Cloud model. Here, the Cloud model is applied 
using AIEM simulations for describing the σo

surf and the W for 
representing V1 and V2. Then, its vegetation parameters, A and B, are 
estimated using a least squares optimization algorithm. The 
parameter values and RMSD’s are presented in Table 5-3. Further, 
Figures 5-5 and 5-6 show respectively C- and L-band the daily 
averaged σo measurements and σo simulated by the Cloud model and 
the ratio method against time. At 15 degrees, it is noted that the σo 
computed by the ratio method and the Cloud model are comparable 
to each other. Only at the start of the growth cycle the ratio σo 

computed using Eq. 5.3 matches the measured σo better lowering the 
RMSD by about 0.28 dB on average.  
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Table 5-3 Calibrated vegetation parameters of the semi-empirical 
Cloud model and the resulting RMSD’s. 

Band Pol. 
Angle A B RMSD 

[degrees] [cm] [cm] [dB] 

C-band 

HH 
15 0.019 0.068 1.52 
35 15.965 0.000 2.35 
55 5.569 0.000 3.06 

VV 
15 0.006 0.098 1.69 
35 3.048 0.000 1.47 
55 2.961 0.000 1.66 

L-band 

HH 
15 0.796 0.000 1.69 
35 3.418 0.000 2.35 
55 0.011 1.668 2.99 

VV 
15 0.007 0.048 1.21 
35 0.576 0.001 1.42 
55 0.519 0.001 2.66 

 
Clear differences between the ratio method and Cloud model are, 

however, observed at incidence angles of 35 and 55 degrees. Most 
notable are the differences at the early growth stage and at 
senescence (W < 1.0 kg m-2). At those biomass levels, vegetation 
scattering becomes increasingly dominant resulting in a sharp σo 
increase with the W. Such increment in the measured σo cannot be 
reproduced by the Cloud model without compromising the σo 
simulation for other parts of the growth cycle; because a strong σo 
increase can only be obtained by the Cloud model as a result of 
vegetation growth when also the γ2 decreases. The difference 
between the measured and Cloud σo is largest for the HH polarization. 
This is explained by a larger measured σo increase because the 
stronger VV attenuation compensates for a part of the increase in 
vegetation scattering. At the HH polarization, RMSD’s calculated for 
the Cloud simulations are, therefore, twice as large as computed for 
the ratio method; on average 2.7 versus 1.3 dB, respectively.  

Further, interesting from a soil moisture retrieval perspective is 
that the ratio method is able to reproduce the σo variations correlated 
to soil moisture changes also at peak biomass. The σo computed by 
the ratio method is, thus, somewhat sensitive to soil moisture, which 
allows its retrieval. The Cloud σo is, however, dominated by the 
vegetation scattering term at peak biomass, and is, thus, primarily 
determined by the W and insensitive to soil moisture. This difference 
between the two methods is stronger at 55 than at 35 degrees. 
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Figure 5-5 Daily averaged C-band σo measurements and simulation 
by the ratio method and the Cloud model. Subplots a), b), c) show 
the result for the HH polarization and incidence angle of 15, 35 and 
55 degrees, respectively.  Subplots d), e), f) show the results for the 
VV polarization and the same incidence angles. 

5.5 Soil moisture retrieval 
Rather than simulating the σo, the Cloud model and, specifically, 

the ratio method have primarily been developed for retrieval 
purposes.  The text below discusses, therefore, the soil moisture 
retrieved from C-band σo using the Cloud model and ratio method. 
The required surface roughness and vegetation parameters for these 
retrievals are adopted from Table 5-1, and from Tables 5-2 and 5-3, 
respectively.  Soil moisture inversion from the C- and L-band 
measurements is based on the minimization of the difference 
between the measured and computed σo using a least squares 
optimization technique. The obtained soil moisture retrievals are 
validated against in-situ measurements as shown in the scatter plots 
of Figures 5-7 and 5-8 for C- and L-band, respectively. In addition, 
Table 5-4 presents RMSD’s and correlation coefficients (ρ’s) 
computed between the measured and retrieved soil moisture. It 
should be noted that the soil moisture retrievals in Figure 5-7 are 
obtained using Eq. 5-2, while the RMSD’s and ρ’s achieved using Eq. 
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5-3 for C-band and incidence of 15 degrees are also given in Table 5-
4.  

 

Figure 5-6 Same as Figure 5-5 except that the results for L-band are 
shown. 
 

As can be observed in Figures 5-7 and 5-8, positive relationships 
are obtained for each sensing configuration between the 
measurements and the soil moisture retrieved by the Ratio method. A 
larger scatter is noted among the Cloud model retrievals. Retrieval 
uncertainties for the Cloud model tend to increase as incidence angle 
increases, while for the Ratio method the highest RMSD is typically 
found at 15 degrees. However, even at the 15 degrees, the RMSD of 
the Ratio method is lower than the one obtained with the Cloud 
model. It can, thus, be concluded that more accurate soil moisture 
retrievals are obtained with the Ratio method.  

In general, the soil moisture retrieval errors obtained with the 
Ratio method model vary from 0.033 to 0.062 m3 m-3. An exception 
is, however, found for L-band HH polarized σo collected at 55 
degrees. The explanation is found in the surface roughness 
parameterization, which will be addressed in Chapter 6. Apart from 
this anomaly, the obtained retrieval errors are comparable to (or 
better than) than the uncertainties reported in previous investigations 
considering that the soil moisture is retrieved over the entire corn 
growth cycle with a maximum W of 5.1 kg m-2. For example, Taconet 
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et al. (1994) and Prevot et al. (1993) report on errors of 0.060 and 
0.065 for winter wheat, respectively.  

Figure 5-7 Scatter plots between the measurements and soil 
moisture retrieved from C-band σo. Subplots a), b), c) show the 
result for the HH polarization and incidence angle of 15, 35 and 55 
degrees, respectively.  Subplots d), e), f) show the results for the VV 
polarization and the same incidence angles. 
 

Further, it should be noted that for C- as well as L-band 
considerable lower retrieval errors are obtained for the VV 
polarization. These RMSD’s from VV polarized σo measured at angles 
of 35 and 55 degrees are comparable to errors levels obtained within 
passive microwave soil moisture retrieval applications (e.g. Jackson 
et al. 1999, Bindlish et al. 2003, Cashion et al. 2005) and fall within 
the requirements typically set for satellite-based soil moisture 
missions (e.g. Kerr et al. 2001, Entekhabi et al. 2004). It should be 
noted that the passive microwave observations used within these 
investigations were acquired at resolutions varying between several 
hundred meters up to tens of kilometers. Because of the highly 
variable spatial soil moisture dynamics, the spatial representativeness 
of the soil moisture measurements is a larger source of uncertainty in 
the validation of those retrievals than for our small scale experiment. 
On the other hand, the temporal soil moisture variability is typically 
larger at small scales. 
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Figure 5-8 Same as Figure 5-7 except that the results for L-band are 
shown. 
 
Table 5-4 Correlation coefficients and RMSD’s between the measered 
soil moisture and retrievals obtained through application of the Ratio 
method and Cloud model. For C-band 15 degrees, the retrieval 
statistics obtained using Eq. 5.2 are in parenthesis. 

Band Pol. Angle 
Cloud model Ratio Method 
ρ RMSD ρ RMSD 

[degrees] [-] [m3 m-3] [-] [m3 m-3] 

C-band 

HH 
15 0.80 0.061 

0.052 
(0.055) 

0.79 
(0.76) 

35 0.73 0.095 0.79 0.044 
55 0.40 0.141 0.64 0.063 

VV 
15 0.75 0.062 

0.56 
(0.057) 

0.72 
(0.72) 

35 0.79 0.057 0.78 0.037 
55 0.62 0.081 0.71 0.042 

L-band 

HH 
15 0.83 0.070 0.82 0.062 
35 0.67 0.080 0.81 0.056 
55 0.60 0.142 0.55 0.103 

VV 
15 0.83 0.053 0.81 0.048 
35 0.85 0.061 0.86 0.035 
55 0.60 0.090 0.81 0.033 

 
The explanation for the typical difference between the VV and HH 

is provided in Joseph et al. (2008). They show that the soil moisture 
sensitivity of the AIEM simulated σo is at all three incidence angles 
larger for VV than HH. As a result, uncertainties in the retrieval 
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procedure have a larger impact on the HH polarization. Moreover, 
they note a strong decrease in the soil moisture sensitivity of the 
AIEM σo under wetter conditions, which explains the larger scatter 
observed above 0.20 m3 m-3. More details regarding the retrieval 
uncertainties are provided in the following section. 

5.6 Discussion 
The previous section showed that retrievals obtained with the 

ratio method outperform the soil moisture retrieved by the Cloud 
model at each antenna configuration. The ratio method is particularly 
effective in reducing the effects of vegetation when σo measurements 
are dominated by vegetation scattering. For the monitored corn 
growth cycle, this is only not the case for C-band σo measured at a 15 
degrees incidence angle. A further analysis of other radar data sets 
should indicate which scattering mechanism is dominant over other 
vegetation types. The successful vegetation correction at larger 
angles, however, leads to retrieval accuracies compliant with the 
requirements set for satellite-based soil moisture missions (e.g. Kerr 
et al. 2001, Entekhabi et al. 2004) with exception of 55 degrees HH 
polarized channels. Of course, the success of applying the ratio 
method to larger scales depends on the selection of the appropriate 
vegetation parameters and the availability of reliable ancillary data 
sets, specifically the W and the surface roughness.  

Accurate estimation of vegetation parameters, however, is a 
problem affecting any soil moisture retrieval algorithm accounting for 
the effects of vegetation explicitly. Nonetheless, before the ratio 
method can be applied at larger scales, an estimate of vegetation 
parameters is needed for a range of vegetation types. Comprehensive 
data sets collected in the past can be used for the development of a 
database of vegetation type specific parameterizations. As such, a 
similar retrieval method can be adopted as is often being used for 
passive microwave soil moisture retrieval applications (e.g. Jackson 
et al. 1999, Wigneron et al. 2007), in which the vegetation type 
specific parameters are assigned based on a land cover classification.  

Apart from its parameterization, the vegetation correction applied 
to σo measurements using the ratio method depends also on the 
availability of reliable W data. Previously, various authors have 
investigated the potential of retrieving W from observations in the 
optical and near-infrared domain (e.g. Jackson et al. 2004, Yilmaz et 
al. 2008). Also, polarimetric σo measurements have been shown to be 
sensitive to changes in biomass. For example, Dente et al. (2008) 
employed the HH/VV σo ratio for retrieving LAI over wheat canopies, 
while Della Vecchia et al. (2008) demonstrated the sensitivity of 
VV/VH σo ratio to fresh biomass.  
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Despite the potential of deriving vegetation information from 
various data sources, the retrieval of W (like soil moisture retrieval) 
poses various challenges, which in turn will affect the reliability of the 
retrieved soil moisture. The impact of such W uncertainties on the soil 
moisture retrieved is investigated by perturbing the measured W by 
random values with fixed standard deviations varying from 1.0 to 
200.0 % of the W. The random values consist of 500 realizations 
from a normally distributed random number generator. For each 
realization, the RMSD between the retrieved and measured soil 
moisture is calculated. All 500 RMSD’s obtained for a specific W 
standard deviation are averaged. Differences between these mean 
values and the original RMSD are computed, which are plotted 
against the W standard deviation in Figure 5-9 for C-band. It should 
be noted that, here, the standard deviation is assumed to represent 
W uncertainties. 

  

Figure 5-9 Increments in the RMSD between the measured and C-
band retrieved soil moisture as a function of the W errors; a) HH 
polarization b) VV polarization.  
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increase at 100% W error of less than 0.020 and 0.015 m3 m-3 for HH 
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magnitude of the vegetation correction is, therefore, larger, which 
increases the impact of the W on the retrieved soil moisture. Figure 
5-9 shows that if a RMSD increase of 0.01 m3 m-3 is tolerated, the W 
error should be less than 23 and 35 % for HH and VV polarization at 
a 55 degrees angle, respectively.  

Also, important for the reliability of soil moisture retrievals is the 
reliability of the estimated surface roughness parameters. Tillage 
operations and weathering are known to affect the roughness 
conditions. Yet, for retrieving soil moisture over natural 
environments, the surface roughness is often assumed to be 
temporally stable. The same assumption has been adopted for this 
study, which has been justified based on the fact that after planting 
the crops no other tillage operations were performed. The validity of 
this assumption and uncertainties imposed on retrievals is more 
thouroughly evaluated in the following chapter.  

5.7 Conclusions  
The effects of a corn canopy on HH and VV polarized C- and L-

band σo measured at incidence angles of 15, 35, and 55 degrees are 
studied for a growth cycle.  This analysis is performed by comparing 
the measured σo against simulations by the AIEM surface scattering 
model. The comparison shows that depending on the antenna 
configuration and growth stage, the σo measurements are dominated 
either by an attenuated soil return or by scattering from vegetation. 
The first mechanism is strongest within the C-band measurements 
collected at 15 degrees and the early growth stage. At larger 
incidence angles, the latter is more notable, specifically among the σo 
measured at peak biomass and the HH polarization. Surprising is, 
however, that even at peak biomass and large incidence angles the 
measured σo response to soil moisture is considerable. This σo 
sensitivity to soil moisture is ascribed to scattering along the soil-
vegetation pathways.  

A method is proposed to correct σo measurements for effects of 
corn vegetation.  This method is based on the concept that the ratio 
of the surface scattering contribution over the measured σo is affected 
by vegetation and can be described as a function of the W. 
Experimentally determined relationships between this ratio and W 
have been used to compute the measured σo and reconstruct the 
amount of surface scattering. Subsequently, the AIEM has been used 
for retrieving soil moisture from the derived surface scattering 
component. For comparison purposes, the semi-empirical Cloud 
model has also been used for σo simulation and soil moisture 
retrieval.  

An evaluation of the simulated σo and retrieved soil moisture 
against measurements shows that the results obtained by the ratio 
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method are superior. It is noted that the differences between the two 
methods increase with the incidence angle. At larger angles, the 
vegetation scattering becomes more prominent causing a σo increase, 
which can only be reproduced by the Cloud model when the σo

v 
increases. This reduces, however, the sensitivity of the computed σo 
to soil moisture. As a result, the observed soil moisture sensitivity at 
peak biomass cannot be reproduced by the Cloud model. Since the 
HH polarization is more affected by vegetation scattering, differences 
between measured and Cloud simulated σo are particularly large at 
this polarization. The ratio method is able to correct for these 
vegetation scattering effects resulting in RMSD between the 
measured and simulated σo of 1.3 dB versus 2.7 dB obtained with the 
Cloud model.  

The ratio method produces also more accurate soil moisture 
retrievals, where again the deviations with the Cloud model increase 
with the incidence angle. Overall, the highest retrieval accuracy 
obtained with the ratio method is from σo measured at a 35 degrees 
incidence angle resulting for C-band in a RMSD of 0.044 and 0.037 
m3 m-3 for HH and VV, respectively.  The higher RMSD’s found for the 
15 degrees incidence angle are somewhat contradicting with past 
research, but are explained as a less effective vegetation correction 
when the attenuated soil return is the dominant scattering 
mechanism.  

This leads to the question whether the ratio method is also 
applicability to other vegetation types and larges spatial scales. 
Therefore, before this method could become operational, additional 
data sets should be analyzed to establish its validity and derive the 
necessary parameters for other vegetation types. When proven 
successful, a similar retrieval approach can be adopted as is being 
used for passive microwave soil moisture retrieval, whereby a specific 
vegetation parameterization is assigned based on a land cover 
classification. In this context, the sensitivity of soil moisture retrievals 
to W uncertainties has been analyzed, which shows that W error 
should be smaller than 23 and 35 % for HH and VV respectively to 
minimize the increase in the retrieval error to less than 0.01 m3 m-3. 
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6 Roughness parameter uncertainties on 
soil moisture retrievals 

 
This chapter is based on: 
 
Van der Velde, R., Joseph, A.T., O’Neill, P.E., Lang, R.H., Gish, T., “Surface 

roughness parameter uncertainties on radar based soil moisture 
retrievals”, to be submitted to IEEE Transactions on Geoscience and 
Remote Sensing.  

 

6.1 Introduction 
Characterization of the amount of surface scattering and emission 

forms the basis of most soil moisture retrieval algorithms, and 
requires the definition of the surface roughness conditions and 
dielectric properties. The dielectric properties of a soil surface are 
affected by the soil moisture content and soil texture, and can be 
determined through application of a mixing model (e.g. Wang and 
Schmugge 1980, Dobson et al. 1985). The roughness of a surface 
represents its geometry and can be described by means of statistical 
properties of field measured surface profiles: root mean square 
height (s), correlation length (l) and autocorrelation length function 
(ACF) (see Chapter 3, Ulaby et al. 1982). Utilization of roughness 
parameters derived from field measurements for large scale soil 
moisture retrieval is, however, found to be unpractical because 
surface roughness is spatially variable (e.g. Bryant et al. 2007, 
Alvarez-Mozos et al. 2009). Obtaining a spatially representative 
parameterization is, thus, cumbersome. Moreover, even when 
roughness is reliably measured, an accurate σo simulation is often 
hindered by the simplifications used for the development of surface 
scattering models (e.g. Verhoest et al. 2008). For example, within 
most surface scattering models the complex surface geometry is 
represented as a single-scale stationary process (e.g. Davidson et al. 
2000, Mattia et al. 2003b). Natural environments may, however, 
exhibit various roughness components perturbing the surface over 
different spatial scales (e.g. Beaudoin et al. 1990). A derivation of the 
surface roughness parameters from σo measurements itself is, 
therefore, preferred. 

Investigations (i.e. Rahman et al. 2007, Bindlish and Barros 2001) 
have shown that multi-channel σo measurements may be availed to 
derive the roughness parameterization. In the case of multi-scale 
rough surfaces, however, the measured angular and polarimetric σo 
behavior is different from simulations by single-scale surface 
scattering model (e.g. Champion and Faivre 1996, Zribi et al. 2002). 
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Hence, the use of multiple channels σo measurements may not 
always yield the appropriate roughness parameterization, which can 
cause large retrievals uncertainties. Yet, effective parameterizations 
can usually be obtained to describe those σo measurements and its 
response to soil moisture by single-scale models (e.g. Champion and 
Faivre 1996, Mattia et al. 2006, Verhoest et al. 2008)  

For this reason, the surface roughness is assumed to be 
temporally stable in many large scale soil moisture mapping 
applications (i.e. Wagner and Scipal 2000, Moran et al. 2002, Thoma 
et al. 2006, Bartalis et al. 2007). For natural vegetation covers (i.e. 
forest, grasslands and wetlands) changes in the surface roughness 
are relatively small, while in agricultural areas the roughness changes 
can be severe due to weathering and farming practices (Zobeck and 
Onstad 1987). For example, Jackson et al. (1997) and Callens et al. 
(2006) have reported on the impact of weathering on surface 
roughness through analysis of a comprehensive set of field 
measurements. More recently, Alvarez-Mozos et al. (2009) studied 
the impact of measured temporal roughness variations on the σo 
simulated by a surface scattering model. They found temporal σo 
variations up to 2.77 dB due to measured roughness changes, which 
cause soil moisture retrieval errors up to 0.05 m3 m-3 under dry 
conditions. However, the impact of such roughness changes on the 
soil moisture retrieved from σo measured over vegetation covers has 
to be quantified.  

Apart from this issue on the temporal stability, the actual 
parameterization needed to obtain accurate soil moisture retrievals 
has also been subject of discussion. For example, the Advanced 
Integral Equation Method (AIEM, Chen et al. 2003), the most widely 
applicable single-scale surface scattering model, requires the s, l and 
ACF as input. The ACF describes the height probability distribution 
function of a random rough surface and is typically assumed to have 
either an Exponential or Gaussian shape (e.g. Ulaby et al. 1982, Zribi 
et al 2000, Verhoest et al. 2008). Exponential ACF’s have been 
mostly reported for smooth agricultural surfaces, whereas the 
Gaussian shape has been found more appropriate for very rough 
surfaces (e.g. Oh et al. 1992, Davidson et al. 2000). With the ACF 
fixed, the other two parameters, s and l, remain for simulating the 
surface scattering as a function of the soil moisture content.  

Of these two parameters specifically the l is difficult to determine 
reliably from in-situ measurements. Oh and Kay (1998) showed that 
for the estimation of l with a 10% accuracy a surface height profile 
length of at least 200l is needed. Moreover, the separate effects of s 
and l on σo measurements and simulations can not be distinguished 
(Su et al. 1997). Therefore, the l is often treated as a calibration 
parameter, and described as a function of the s (e.g. Su et al. 1997, 
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Baghdadi et al. 2002a, Zribi and Dechambre 2002, Bryant et al. 
2007). This raises the question on the value of estimating a unique l 
within soil moisture retrieval applications. Hence, the most widely 
used semi-empirical surface scattering models (e.g. Oh et al. 1992, 
Dubois et al. 1995, Shi et al. 1997) use only the s to parameterize 
the surface roughness. 

In this chapter, the impact of assuming a temporally stable 
surface roughness and a specific roughness parameterization is 
studied within the context of soil moisture retrieval over the 2002 
corn growth cycle. The C- and L-band σo measurements collected 
during the OPE3 field campaign (see Chapter 4) are used for this 
investigation. These σo measurements are corrected for the 
vegetation effects through application of the Ratio method described 
in the previous chapter. Then, the AIEM is used to retrieve the soil 
moisture based on the input of soil texture information and a surface 
roughness parameterization.  

Similar to the previous chapter, the roughness parameters are 
determined using the σo measured over bare soil conditions collected 
at the beginning of the campaign. In estimating the roughness, here, 
four types of parameterizations are derived assuming both 
Exponential and Gaussian ACF’s, and a fixed or variable l. Using the 
inverted roughness parameterizations, soil moisture is retrieved over 
the complete corn growth cycle and its accuracy is evaluated.  To 
examine the temporal stability, the assumed time-invariant 
roughness parameters are optimized by minimizing the Root Mean 
Squared Difference (RMSD) between the measured and retrieved soil 
moisture. The evolution of the remaining retrieval errors is 
investigated and its relationship to weathering (rainfall) is evaluated.  

6.2 Estimated surface roughness parameters 
In the previous chapter, the surface roughness parameterization 

was determined to quantify the surface scattering component as a 
function of the soil moisture through the dielectric properties. In 
accordance with the reported ACF’s for agricultural fields, an 
Exponential ACF was assumed for this surface roughness inversion. 
Then, the s and l were inverted from the four σo measurements 
collected on May 10th, during which the land cover was bare soil. The 
same approach is applied, here, to determine the s and l for an 
assumed Gaussian ACF. In addition, for both types of ACF’s, 
parameterizations are also derived by only calibrating the s, while 
taking the average of ten measured surface height profiles as the l 
(which is 7.25 cm).  

The roughness parameters obtained for an ‘Exponential’ and 
‘Gaussian’ ACF are given in Tables 6-1 (essentially the same as Table 
5-1) and 6-2, and the parameters obtained by fixing l are presented 
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in Tables 6-3 and 6-4 for the ‘Exponential’ and ‘Gaussian’ ACF, 
respectively.  Apart from the inverted roughness parameters, also the 
RMSD between the AIEM simulated and measured σo are presented. A 
comparison shows that the differences in the RMSD between the four 
parameterizations are negligible. This indicates that the σo measured 
over bare soils can be described using each of the four 
parameterizations by means of the so-called “effective parameters”.  

 
Table 6-1 Surface roughness parameters inverted assuming an 
Exponential ACF (‘bare soil’ parameterization’). 

Band Pol. 
Angle s l RMSD 

[degrees] [cm] [cm] [dB] 

C-band 

HH 
15 0.65 9.54 0.93 
35 0.73 9.79 0.83 
55 0.82 11.05 1.04 

VV 
15 0.42 10.96 0.08 
35 0.45 10.65 0.75 
55 0.35 10.18 0.95 

L-band 

HH 
15 0.42 9.85 0.84 
35 0.61 9.60 0.47 
55 0.46 10.05 0.39 

VV 
15 0.46 9.92 0.87 
35 0.68 12.84 0.51 
55 0.38 10.16 0.09 

 
Table 6-2 Surface roughness parameters inverted assuming a 
Gaussian ACF (‘bare soil’ parameterization’). 

Band Pol. 
Angle s l RMSD 

[degrees] [cm] [cm] [dB] 

C-band 

HH 
15 2.99 7.81 0.93 
35 1.62 9.98 0.84 
55 2.75 9.69 1.05 

VV 
15 2.56 4.42 0.25 
35 1.38 10.02 0.74 
55 2.42 9.78 0.95 

L-band 

HH 
15 0.31 9.48 0.83 
35 0.67 10.16 0.47 
55 1.06 10.07 0.41 

VV 
15 0.34 9.46 0.87 
35 0.71 10.27 0.51 
55 1.19 10.10 0.10 

 
Obviously, differences are noted among the absolute values of the 

inverted parameters. An evaluation of the parameters obtained via 
the simultaneous inversion of s and l versus the calibration of the s 
alone shows that the magnitude of s changed somewhat, but that the 
general trends observed among the parameters remained the same. 
This could also be expected based on the fact that within various 
studies the relationship between l and s is used to reduce the number 
of (A)IEM input parameters (e.g. Su et al. 1997, Baghdadi et al. 
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2002b, Zribi and Dechambre 2002, Baghdadi et al. 2004). On the 
other hand, significant differences are observed between the 
parameters obtained with the Exponential and Gaussian ACF. Most 
notable is the angular dependence of the parameters obtained with 
the Gaussian ACF, while no such dependency is found for the 
Exponential ACF. This suggests that the AIEM is better in describing 
the angular σo response, which is particularly important when using 
multi-angular σo data as is, for example, measured by ASAR in the 
Wide Swath mode.  
 
Table 6-3 Surface roughness parameters inverted assuming an 
Exponential ACF and l of 7.25 cm (‘bare soil’ parameterization’). 

Band Pol. 
Angle s l RMSD 

[degrees] [cm] [cm] [dB] 

C-band 

HH 
15 0.57 7.25 0.93 
35 0.65 7.25 0.83 
55 0.70 7.25 1.05 

VV 
15 0.34 7.25 0.08 
35 0.37 7.25 0.76 
55 0.30 7.25 0.91 

L-band 

HH 
15 0.42 7.25 0.84 
35 0.55 7.25 0.47 
55 0.40 7.25 0.39 

VV 
15 0.46 7.25 0.88 
35 0.54 7.25 0.50 
55 0.33 7.25 0.09 

 
Table 6-4 Surface roughness parameters inverted assuming a 
Gaussian ACF and l of 7.25 cm (‘bare soil’ parameterization’). 

Band Pol. 
Angle s l RMSD 

[degrees] [cm] [cm] [dB] 

C-band 

HH 
15 2.78 7.25 0.93 
35 1.14 7.25 0.84 
55 1.98 7.25 1.05 

VV 
15 0.34 7.25 0.09 
35 0.95 7.25 0.74 
55 1.69 7.25 0.95 

L-band 

HH 
15 0.35 7.25 0.83 
35 0.40 7.25 0.47 
55 0.48 7.25 0.39 

VV 
15 0.39 7.25 0.87 
35 0.39 7.25 0.51 
55 0.40 7.25 0.09 

 
Often, the actual surface roughness is of lesser interest and the 

objective is usually the retrieval of soil moisture (or another 
biophysical parameter). The retrieval accuracy obtained with each of 
the four roughness parameterizations is, therefore, evaluated. The 
algorithm used for these retrievals employs the Ratio method 
discussed in the previous chapter to correct for the effects of 
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vegetation and uses the roughness parameters from Tables 6-1 to 6-
4 as input for the AIEM. The RMSD between measured and retrieved 
soil moisture is calculated for each roughness parameterization to 
indicate its performance. Figure 6-1 shows the obtained RMSD’s for 
each of the twelve channels (two bands, two polarizations and three 
incidence angles).  
Figure 6-1 RMSD calculated between the measured and retrieved soil 
moisture obtained via application of four roughness 
parameterizations for twelve channels: C- and L-band, HH and VV 
polarization and incidence angles of 15, 35 and 55 degrees. 

 
Within this plot, fairly small differences are noted between RMSD‘s 

obtained with the parameterizations inverted using both s and l, and 
using only s.  Differences in the obtained RMSD by assuming either a 
Gaussian or an Exponential ACF’s are, however, more substantial at 
C-band. At C-band and angles of 35 and 55 degrees, the Gaussian 
ACF yields the more accurate soil moisture retrievals for the HH 
polarization, while the Exponential ACF provides better results for the 
VV polarization. The typical differences observed between the two 
ACF’s are on the order of 0.01 m3 m-3. An exception is, however, the 
L-band HH polarization 55 degrees retrievals. For this sensing 
configuration the AIEM simulates for all roughness parameterizations 
only a 5 dB σo range from completely dry to completely wet 
conditions; except when both s and l are calibrated using a Gaussian 
ACF. Because of the significantly larger soil moisture sensivity of the 
σo simulated using the Gaussian ACF, uncertainties affecting 
retrievals (e.g. reliability of σo and W measurements) have a smaller 
impact on the overall retrieval accuracy leading to a 0.028 m3 m-3 
decrease of the RMSD. It should, however, be noted that in spite of 
the observed differences, no single parameterization type produces 
consistently for all channels the most accurate soil moisture 
retrievals.  
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Table 6-5 Surface roughness parameters inverted assuming an 
Exponential ACF by minimizing RMSD between the measured and 
retrieved soil moisture (‘growth cycle’ parameterization’). 

Band Pol. Angle 
s and l inversion s inversion 

s l s l 
[degrees] [cm] [cm] [cm] [cm] 

C-band 

HH 
15 1.68 13.10 1.24 7.25 
35 3.46 10.80 2.85 7.25 
55 1.27 24.60 0.77 7.25 

VV 
15 0.30 3.70 0.36 7.25 
35 0.30 4.50 0.37 7.25 
55 0.30 6.60 0.31 7.25 

L-band 

HH 
15 3.46 3.70 0.47 7.25 
35 0.89 24.40 0.54 7.25 
55 0.85 24.90 0.44 7.25 

VV 
15 0.51 5.80 0.49 7.25 
35 0.50 4.50 0.56 7.25 
55 0.31 6.10 0.33 7.25 

 
Table 6-6 Surface roughness parameters inverted assuming a 
Gaussian ACF by minimizing RMSD between the measured and 
retrieved soil moisture (‘growth cycle’ parameterization’). 

Band Pol. Angle 
s and l inversion s inversion 

s l s l 
[degrees] [cm] [cm] [cm] [cm] 

C-band 

HH 
15 1.01 13.60 2.56 7.25 
35 1.82 10.90 1.17 7.25 
55 3.19 10.80 2.04 7.25 

VV 
15 0.30 6.70 0.34 7.25 
35 0.31 3.50 0.95 7.25 
55 0.42 3.00 1.71 7.25 

L-band 

HH 
15 3.48 3.00 0.40 7.25 
35 2.48 22.00 0.40 7.25 
55 3.13 17.60 0.56 7.25 

VV 
15 0.35 13.00 0.41 7.25 
35 0.42 3.20 0.40 7.25 
55 0.31 6.50 0.40 7.25 

6.3 Temporal stability of surface roughness 
The previous section showed that by using time-invariant 

roughness parameterizations derived from σo measured at the 
beginning of the OPE3 campaign retrieval accuracies can be achieved 
varying from 0.033 to 0.063 m3 m-3. Hereafter, this parameterization 
is referred to as ‘bare soil’. The focus of this section lies on evaluating 
the impact of surface roughness changes on the reliability of soil 
moisture retrieved throughout the growth cycle. To this aim, the 
parameter(s) of the four parameterization types are inverted by 
minimizing the RMSD between the measured and retrieved soil 
moisture. The resulting roughness parameters are given in Tables 6-5 
and 6-6 for the two Exponential and two Gaussian ACF 
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parameterizations, respectively. Hereafter, these parameterizations 
are referred to as ‘growth cycle’. Further, Figure 6-2 presents the 
obtained RMSD’s for each of the twelve channels and four 
parameterization types. 

The plots of Figure 6-2 show that the differences in the retrieval 
accuracy obtained with bare soil and growth cycle parameterizations 
are, in general, limited and in some cases even non-existent. Most 
significant improvements are noted at the largest angle of incidence: 
55 degrees. The obtained differences at this incidence angle are 
typically on the order of 0.01 m3 m-3. The retrievals from 55 degrees 
HH polarized L-band σo form, however, an exception. The RMSD’s 
obtained with growth cycle parameterization is typically more than 
0.02 m3 m-3 smaller than the ones obtained with the bare soil 
parameterizations.  

Figure 6-2 RMSD’s obtained between the measured and the soil 
moisture retrieved through application of the bare soil and growth 
cycle roughness parameterizations. 
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the bare soil parameterization. These parameterizations can, thus, be 
considered as temporally stable. This discrepancy with the 
parameterization obtained by inverting both s and l is explained by 
the numerical dependency of their impact on AIEM simulations. 

 

Figure 6-3 The RMSD between the measured and retrieved soil 
moisture computed for the complete corn growth cycle plotted for 
the twelve channels as a function of the s and l for an assumed 
Exponential ACF. 
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Figure 6-4 Same as Figure 6-3 only a Gaussian ACF is assumed. 
 

To illustrate how this numerical dependency behaves, a broad 
range of roughness parameter sets has been used as AIEM input for 
the retrieval of soil moisture. The parameter range is established by 
varying s and l independently from 0.3 to 3.5 cm and from 3.0 to 
25.0 cm with intervals of 0.01 and 0.1 cm, respectively. Then, for 
each parameter set the RMSD between measured and retrieved soil 
moisture is calculated, which is plotted as a function of the s and l for 
the twelve channels in Figure 6-3 for the Exponential ACF and the 
Figure 6-4 for the Gaussian ACF.  
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These plots illustrate is that using both ACF’s the highest retrieval 
accuracy can be achieved for various combinations of s and l. The 
RMSD’s between the measured and soil moisture retrieved with the 
Exponential ACF appear to be least sensitive to changes of l. 
Especially the plots for L-band and the large incidence angles show 
that the minimum RMSD can be obtained with most l values as long 
as the appropriate s is selected. A certain tolerance for s is also 
noticed in the plots for C-band and incidence angles of 15 and 35 
degrees. However, even for those channels the RMSD is less sensitive 
for the l than for the s.  

Similar relationships between roughness parameters and RMSD 
are found when a Gaussian ACF is used for the retrieval of soil 
moisture from σo measured from a 15 degrees incidence. At larger 
angles, however, the RMSD becomes more sensitive to changes in s. 
At 55 degrees, it is even not possible to obtain the minimum RMSD 
when the l is larger than 18.0 cm for L-band and larger than 13.0 cm 
for C-band. This angular dependency is consistent with the 
relationship found between the roughness parameters and incidence 
angle observed among the parameter values in Tables 6-4 and 6-6.  

Further, it should be noted that the parameter range needed to 
obtain a low RMSD is smaller for a Gaussian ACF than for an 
Exponential ACF.  This means that the RMSD can have a larger 
tolerance for roughness parameter uncertainties when an Exponential 
ACF is selected. On the other hand, from the parameter estimation 
perspective a larger sensitivity is often preferred, which would opt for 
the Gaussian ACF. 

6.4 Temporal evolution of retrieval errors 
A comparison of the RMSD’s obtained with the bare soil and 

growth cycle parameterizations was utilized to study the impact of 
surface roughness changes on the soil moisture retrieval accuracy 
over the complete corn growth cycle. The improvements noted by 
using the growth cycle parameterization is for most channels less 
than 0.01 m3 m-3. This indicates that the surface roughness estimated 
at the beginning of the monitored growth cycle can be considered 
representative for the entire growth cycle when a time invariant 
roughness parameterization is assumed. Obviously, the soil surface 
during the OPE3 campaign was not disturbed by farming practices 
after the crops were planted.  

The impact of roughness changes over short time scales is, 
however, not evaluated by analyzing the RMSD’s computed over the 
entire campaign. To study the impact of surface roughness changes 
over short time scales the differences between the measured and 
retrieved soil moisture are computed and averaged for each 
acquisition day. The roughness parameterization obtained by 
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calibrating both the s and l with a Gaussian ACF is used for these 
retrievals because with this parameterization significantly more 
accurate retrievals are obtained for L-band HH σo collected from 55 
degrees incidence angle. The daily averaged values are presented in 
Figure 6-5 for the twelve channels. In addition, rainfall amounts are 
plotted on the secondary axis as it is understood that weathering 
induced by precipitation may have a prominent role in changing the 
surface roughness (e.g. Zobeck and Onstad 1987, Callens et al. 
2006). 

 

Figure 6-5 Differences between the measured and retrieved soil 
moisture averaged for each acquisition day and plotted against time; 
C-band results for incidence angles of 15, 35 and 55 degrees are 
shown in a), b) and c), respectively, and the L-band results are 
shown in d), e) and f), respectively. 
 

Of course, the analysis of only the temporal evolution of retrieval 
errors is not the best approach to study its dependency to surface 
roughness changes. Other uncertainties could also affect the retrieval 
accuracy such as inconsistencies in applied vegetation correction 
method. A full investigation of these temporal roughness variations 
would, therefore, require in-situ measurements as has been done by 
Callens et al. (2006) and Alvarez-Mozos et al. (2009). Unfortunately, 
a time series of surface roughness measurements is not available for 
the OPE3 campaign.  
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The plots of Figure 6-5 show, however, that the development of 
the soil moisture retrieval errors has some consistency with the 
antecedent precipitation. Especially for incidence angles of 35 and 55 
degrees, the largest retrieval errors occur after intensive rainfall. For 
example, prior to June 19th about 40 mm of rain was measured and 
93 mm of rain fell before September 4th, which result in soil moisture 
underestimations up to 0.15 and 0.13 m3 m-3, respectively. In 
addition, the variations in the retrieval errors become smaller close to 
peak biomass suggesting that the surface roughness remained 
constant. This can be argued for because fully grown corn plants 
shield the land surface from the direct impact of rain droplets and 
may, thus, suppress the effects of weathering.  

The increase of the retrieval errors after intensive rain is stronger 
for the HH than for the VV polarization and also more pronounced at 
L-band and the larger incidence angles (35 and 55 degrees). This is 
somewhat expected based on previous investigations. For example, 
Holah et al. (2005) showed that HH σo measurements are more 
sensitive to the surface roughness than the VV polarization. Similarly, 
Beaudoin et al. (1990) and Baghadi et al. (2002b) found that at large 
incidence angles the influence of roughness dominates the σo. 
Further, over a range of roughness conditions, Zribi et al (1997) 
observed a larger σo variability for L-band than for C-band.  

This higher σo sensitivity to surface roughness reported for L-
band, HH polarization and large incidence angles means that those σo 

measurements are also more affected by changes in roughness due 
to weathering. Hence, the soil moisture retrieval errors after intensive 
rain events are larger for those sensing configurations. An important 
conclusion is that the retrieval accuracy is not only determined by σo 
sensitivity to soil moisture, but is also affected by its sensitivity to 
other time varying land surface parameters. Therefore, hardly any 
differences in RMSD’s are observed between C- and L-band, and 
more accurate retrievals are obtained for the VV polarization. In the 
literature, however, there are various reports on larger σo sensitivities 
to soil moisture for the lower frequencies and the HH polarization 
(e.g. Ulaby and Batlivala 1976, Ulaby et al. 1996, Shi et al. 1997, 
Macelloni et al. 1999).  

Now looking back to the results presented in the previous chapter 
on the impact of vegetation on σo measurements, the inaccuracies in 
the modelled σo may also be a consequence of assuming a constant 
roughness parameterization. With no surface roughness 
measurements, however, it is difficult to explain the exact source of 
these retrieval errors.  
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6.5 Conclusions 
In this chapter, the impact of surface roughness parameter 

uncertainties on soil moisture retrieved from σo measured throughout 
the corn growth cycle is discussed. These σo measurements have 
been corrected for the effects of vegetation through application of the 
Ratio method as described in the previous chapter. Then, the AIEM is 
utilized to evaluate the assumptions made regarding the utilized 
roughness parameterization, and to analyze the validity of time-
invariant parameters.  

As a first step, surface roughness parameters are inverted from σo 
measured over bare soil conditions as has been done in the previous 
chapter resulting in a parameterization referred to as ‘bare soil’. Via 
this approach, parameterizations are derived for an assumed 
Exponential and Gaussian ACF’s, and a fixed (measured) or variable l. 
Thus, in total four types of parameterization are obtained. Each of 
those has been used as input for the AIEM for the retrieval of soil 
moisture over the entire growth cycle.  

In general, the most significant differences in the retrieval 
accuracies are observed between the two ACF’s, while using a 
variable l had only minor impact on the soil moisture retrieval 
accuracy. Overall, the differences in the retrieval accuracies are, 
however, smaller than 0.01 m3 m-3. Given such small differences it 
can be concluded that, from the soil moisture retrieval perspective, 
effective roughness parameters can be estimated for each 
parameterization type.  

Next to the inversion of the bare soil parameterizations, the 
roughness parameters have also been inverted by minimizing RMSD 
between the measured and retrieved soil moisture resulting to a 
parameterization referred to as ‘growth cycle’. Compared to using 
bare soil parameterization, the retrieval accuracy achieved with 
growth cycle parameters are an improvement. However, the 
differences between the two parameterizations are typically smaller 
than 0.01 m3 m-3. Thus, the roughness parameters estimated at the 
beginning of the OPE3 campaign approximate the surface conditions 
throughout the entire campaign fairly well. This means that on 
average over the monitored growth season the impact of surface 
roughness changes on the retrieved soil moisture is limited. 

An analysis of the differences between the measured and 
retrieved soil moisture shows that the largest errors occur specifically 
after precipitation events. It is found that the increase in the retrieval 
error after intensive rain is strongest at HH polarization, L-band, and 
large incidence angles, which is in agreement with previous reports 
on σo sensitivities to surface roughness. This can be considered as a 
reason for the more accurate soil moisture retrievals from the VV 
polarized σo measured during the OPE3 campaign. 
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7 Tibetan land surface conditions observed 
by ASAR  

 
This chapter is based on: 
 
Van der Velde, R., Su, Z., Ma, Y., 2008, “Impact of soil moisture dynamics on 

ASAR σo signatures and its spatial variability observed over the Tibetan 
Plateau”, Sensors, 8, pp. 5479-5491. 

Van der Velde, R., and Su, Z., 2009, “Dynamics in land-surface conditions on 
the Tibetan Plateau observed by Advanced Synthetic Aperture Radar 
(ASAR)”, Hydrological Sciences Journal, 54, pp. 1079-1093. 

 

7.1 Introduction 
Since the launch of the first European Remote Sensing (ERS) 

satellite in 1992, σo measurements acquired by space borne 
scatterometers and SAR systems have become available to a broader 
community. The sensors onboard this platform provided, however, 
measurements only at C-band, VV polarization and fixed incidence 
angles. At present, the constellation of satellites maintained by 
various space agencies includes active microwave instrumentation 
operational at different frequencies, in (fully) polarimetric mode and 
at various incidence angles. Specifically, interesting from a soil 
moisture retrieval perspective is the Phased Array type L-band SAR 
(PALSAR) by the Japan Aerospace Exploration Agency (JAXA) and the 
Advanced Scatterometer (ASCAT) by the ESA. Moreover, the NASA is 
in preparation of two missions, SMAP and Aquarius, carrying the first 
two L-band scatterometers.  

Most of the missions mentioned above are, however, primarily 
focussed on the development of the science needed for establishing 
continuous monitoring programs. On the other hand, the need for 
monitoring environmental disasters (e.g. floods and droughts) has 
been formulated within Global Monitoring for Environment and 
Security (GMES) program of the European Commission. In this 
framework, the ESA is in preparation of a series of Sentinel missions 
that will bring together the satellite measurements required to meet 
these objectives. Although the exact antenna configuration has to be 
defined, the first Sentinel satellite scheduled for launch will be a SAR 
system comparable to the ASAR currently flown onboard ENVISAT.  

Advantageous of the SAR technique is that it is able to provide 
high resolution microwave measurements from space. At microwave 
frequencies, the dielectric properties are strongly affected by the 
liquid water content in the surface soil layer and vegetation cover. 
Based on this characteristic, SAR data has been investigated for its 
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potential to observe changes in land surface states, such as soil 
moisture (i.e. Su et al. 1997, Bindlish and Barros 2001, Löw et al. 
2006, Baup et al. 2007a, Thoma et al. 2008, Van der Velde et al. 
2008), vegetation biomass (i.e. Rignot et al. 1994, Saatchi et al. 
1997, LeToan et al. 2004) and freeze/thaw conditions (i.e. Rignot and 
Way 1994, Way et al. 1997, Koskinen et al. 1997, Wismann 2000).  

The derivation of the biophysical variables from SAR data on an 
operational basis poses, however, various challenges. For example, at 
the high resolution of SAR spatially representative parameterizations 
required to describe surface roughness and vegetation effect on σo 
are difficult to define. Moreover, due to limitations in the sensing 
systems (e.g. ERS-1/-2) or conflicts with other users in case of multi-
mode sensing systems (e.g. RADARSAT-1/-2, ASAR, PALSAR), long-
term SAR data sets with a high temporal resolution are difficult to 
obtain. The temporal resolution of most existing SAR data sets has, 
therefore, been too coarse for capturing changes in highly dynamic 
land surface states such as soil moisture and freeze/thaw conditions.  

In the framework of the ESA-Ministry of Science and Technology 
of China (MOST) sponsored Dragon programme, consistent data 
requests have resulted in a unique time series of ASAR images 
acquired in the WS mode over the central part of the Tibetan Plateau. 
This data set has been described in Section 4.3 and is referred to as 
the Tibetan data set. In this chapter, the collected ASAR WS data set 
is utilized to analyze the impact of changes in land surface states on 
σo. The land surface states considered are soil moisture, soil 
temperature and biomass, for which the NDVI is taken as a proxy.  

Comparison of σo signatures from two different land units (of 1x1 
km2) with contrasting land surface hydrology (a grassland and a 
wetland) and located in each others proximity is utilized to study the 
impact of these land surface states on the temporal σo variability. In 
addition, the σo from domains of 5x5 km2 and 30x30 km2 selected 
around the two 1x1 m2 areas is studied to evaluate the impact of the 
variability in the land surface states on the σo variability within those 
areas. A time series of soil moisture and temperature measurements 
collected at the Naqu station and Système Pour l’Observation de la 
Terre (SPOT) NDVI products are used to identify the impact of soil 
moisture, soil temperature and biomass on the σo response. A 
multivariate regression analysis of four linear models is presented to 
statistically evaluate the contribution of each land surface state to the 
observed temporal σo variability.  

7.2 Definition of the study areas 
As described in Chapter 4, the land cover in the Tibetan study 

area consists of grasslands and wetlands. The soil moisture in the 
grasslands is typically subject to a large temporal variability, while 
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the wetlands remain fairly wet throughout the monsoon season due 
to its water supply from upstream areas. Further, weather on the 
Plateau is dominated by a dry winter season from November till April, 
and wet and warm monsoon during the months July, August and 
September. Thus, land surface conditions in the selected study area 
are highly dynamic in both space and time.  

Figure 7-1 LandSat TM false color image of a part of the Naqu river 
basin and the location of the selected spatial domains. 
 

The impact of these land surface dynamics on σo signatures and 
its spatial variability are investigated for four study domains. Among 
these four domains are areas of 30x30 km2, 5x5 km2 and two of 1x1 
km2. The areas are selected in such way that 5x5 km2 domain is 
included in the 30x30 km2 domain and the both 1x1 km2 domains are 
included in the 5x5 km2 domain as is shown in Figure 7-1. Land 
covers in the 30x30 km2 and 5x5 km2 consist of a mixture of wetland 
and grassland, while for the 1x1 km2 domain uniform grassland and 
wetland areas have been selected. 

7.3 Temporal σo variability 
In the WS mode, ASAR measures σo over an incidence angle 

range of 16o to 43o. As the previous two chapters also showed that 
the σo depends on the incidence angle, a correction is needed before 
the σo response to changes in land surface states can be studied. The 
σo is normalized to an incidence angle of 23o using, 
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where, σo(θi) represents the angular dependent ASAR σo 
measurements, θi is the local incidence angle [degrees], and σo(23o) 
is the backscatter normalized to an incidence angle of 23 degrees. 

 This theoretical approach is based on Lambert’s law for optics, 
which assumes that the relationship between the incidence angle and 
amount of scattering per unit surface area follows the cosine law. 
This behaviour is typical for the middle range of incidence angles, in 
which σo is measured in the WS mode (Ulaby et al. 1982).  

Figure 7-2 presents the normalized σo and NDVI collected over the 
1x1 km2 grassland and wetland areas, and the soil moisture 
measured at Naqu station. The soil temperature measurements and 
daily precipitation amounts are shown at the top of the figure. 
Unfortunately, due to mechanical difficulties with the logging 
systems, soil moisture and temperature measurements are not 
available prior to 2 September 2005.  

The plots illustrate the impact of the seasonal dynamics in land 
surface conditions on the temporal σo variability of the grassland and 
wetland areas. During winters, the σo over the two areas is low and 
remain stable around –16.0 dB. In this period, the soil temperature is 
primarily below freezing point and soil water is frozen, as is indicated 
by the soil temperatures. Under these conditions, the dielectric 
constant is small and comparable to values for dry soil (Wang and 
Schmugge 1980; Dobson et al. 1985), which results in a low σo 
response. 

In spring, the frozen soil water melts due to an increase in the 
temperature. Hence, the dielectric properties of the soil surface 
become larger and, over both the grassland and wetland, higher σo 
values are recorded. The wetland σo increases rapidly towards the 
summer and remains high throughout the monsoon season, with few 
temporal variations. Also, the grassland σo response increases on 
average, but the temporal σo variability observed during the summer 
is much larger than that over the wetland. This contrast between the 
wetland and grassland is somewhat expected and can be explained 
by the differences in the pedosphere and hydrographic location.  
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Wetlands are situated in the lowest part of the watershed, and 
runoff produced upstream by thawing of frozen water accumulates in 
these areas. From the onset of thaw, the liquid soil moisture content 
in the wetlands increases, even in the absence of antecedent 
precipitation. Grasslands, however, are located at a higher elevation 
and lack the water supply from upstream areas. As the melted soil 
water drains into the deep soil profile or runs off to the lower parts of 
the watershed; the soil moisture in the grassland depends solely on 
antecedent precipitation. The soils in the grasslands are highly water 
conductive (Ks = 1.2 m d-1), and are subject to a high evaporative 
demand (Ma et al. 2006). Therefore, the dry down cycles are short, 
which is reflected in the high temporal σo variability.  

Figure 7-2 Time series of soil moisture, incidence angle normalized σo 
and NDVI over 1x1 km2 grassland area and a 1x1 km2 wetland area. 
Soil temperature and daily precipitation amounts are presented at 
the top. 

7.4 Spatial σo variability 
The influence of land surface conditions on the temporal σo 
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surface dynamics on the spatial σo variability, the mean σo and its 
standard deviation (stdev) computed for the four domains (as defined 
in Figure 7-1) is analysed. Figure 7-3 presents for each domain the 
mean σo plotted against the σo stdev. Characteristic for the data point 
distribution in those plots is the triangular shape consistently 
observed for all four domains. This particular shape is explained as 
follows and by the diagram shown in Figure 7-4. 

The lowest mean σo and σo stdev represent dry and frozen 
conditions. Because drought and freezing conditions have an impact 
on large areas, the spatial σo variability is small and the σo stdev is 
primarily caused by speckle and spatial surface roughness variations. 
Comparison of the minimum stdev’s obtained from the different 
domains shows that the spatial σo variability increases with the size of 
the domain. This might be expected because over larger domains the 
spatial variability due to roughness increases. 

Figure 7-3 The standard deviation plotted against the mean σo 
measured by ASAR over four domains around Naqu station.  
  

The mean σo value increases under conditions where liquid soil 
moisture is present. When freeze/thaw cycles and precipitation are 
spatially homogeneous, the σo variability remains relatively low. The 
σo variability increases due to spatial differences in soil thermal and 
hydraulic properties, and precipitation inputs.  
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For each of the four domains, a well-defined and linear 
relationship exists between the mean σo and maximum stdev at 
specific mean σo levels, and its slope could be seen as measure for 
the surface heterogeneity of a specific domain. Steeper slopes 
indicate a larger surface heterogeneity. For the 5x5 km2 domain, the 
slope is steepest and its surface heterogeneity is considered to be the 
largest of the four domains. This is, however, also influenced by the 
distribution of wetlands and grasslands in the selected areas, because 
differences in land surface conditions between wetlands and 
grasslands persist, specifically during the monsoon. The similarity 
between the slopes in plots of the 30x30 km2, and 1x1 km2 wetland 
and grassland domains is striking and suggests a similarity in the 
surface heterogeneity between these areas. 

Figure 7-4 Schematization of the relationship between the mean σo 
and the standard deviation, and its coherence with specific land 
surface conditions and characteristics. 
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decreases for three reasons. Firstly, high σo values are only obtained 
when the entire domain is at or near saturation. Secondly, vegetation 
attenuates the soil surface scattering contribution and reduces the σo 
sensitivity to soil moisture changes. Thirdly, the σo response is less 
sensitive to soil moisture changes under wet than under dry 
conditions. This decreasing σo sensitivity to soil moisture due to either 
vegetation or soil wetness reduces the impact of spatial soil moisture 
variations on the σo variability.  

Further, the plots show that the σo variability is higher under 
saturated than under dry conditions, which is caused by a 
combination of spatial variations in the porosity and vegetation. The 
increase in the spatial variability is stronger for larger domains 
(30x30 km2 and 5x5 km2) than the 1x1 km2 domains, which is 
expected because the variability in the porosity and vegetation tend 
to increase over larger distances.  

Figure 7-5 Time series of the grassland and wetland σo and soil 
moisture, NDVI and soil temperature rescaled to the dynamic 
grassland and wetland σo range, respectively. 

 

7.5 Multivariate analysis 
In addition, a multivariate analysis is performed to quantify 

statistically the impact of the land surface states variations (e.g. 
NDVI, soil moisture and temperature) on the σo observed over the 
1x1 km2 grassland and wetland areas. For this analysis, the dynamic 
ranges of the states are normalized by rescaling the NDVI, soil 
moisture and temperature to the dynamic σo range following,  
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where, x is the land surface state, subscripts i, min and max indicate 
a member, and the minimum and maximum values of the data set, 
respectively, and subscript dB represents the land surface state 
rescaled to the dynamic σo range. This rescaling of the land surface 
states has been performed for the part of the ASAR data set for which 
the NDVI, soil moisture and soil temperature measurements are 
available, which is from 10 September 2005.  

Figure 7-5 presents the time series of the rescaled land surface 
states, and the grassland and wetland σo. This figure shows that the 
NDVI explains grassland σo variability only on a seasonal time scale. 
The σo variations over short periods are best described by the 
temporal evolution of the rescaled soil moisture measurements. Also, 
some correlation is observed between soil temperature changes and 
the σo variations during winter.  

This correlation between the σo and soil temperature is, however, 
more pronounced for the wetland. Annual cycles of soil temperature 
and wetland σo match very well; specifically, the onset of the soil 
temperature and wetland σo increase in spring coincides for both 
2006 and 2007. The rescaled soil moisture characterizes only a part 
of the σo variations over short time scales. It should, however, be 
noted that the soil moisture measurements have not been collected 
directly in the wetland, which explains the differences between the 
wetland σo and soil moisture dynamics. 
 
 

Table 7-1 Variance (s2) of backscatter measurements (σo) collected 
over a Tibetan grassland and wetland, and normalized soil moisture 
(sm), NDVI and soil temperature (Tsoil) and correlations calculated 
between the original variables. 

 σo sm NDVI Tsoil s2 

Grassland 
σo 1.00 0.59 0.47 0.43 6.11 
sm  1.00 0.66 0.66 10.77 

NDVI  1.00 0.83 17.27 
Tsoil  1.00 9.11 

Wetland 

σo 1.00 0.62 0.56 0.64 8.03 
sm  1.00 0.67 0.66 9.68 

NDVI  1.00 0.85 13.46 
Tsoil  1.00 8.19 

 
Further, a clear discrepancy is noted between the wetland σo and 

NDVI annual cycles. With respect to the wetland σo, the NDVI 
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increase in spring is delayed and the NDVI decrease in the post-
monsoon season starts earlier. This is caused by the runoff from 
upstream areas, which increases the soil moisture in the wetland and 
σo. In spring, the runoff produced by melt increases the soil wetness 
and, in the post-monsoon season, runoff from rain ensures a gradual 
drying of the wetland, while the temperatures in these two periods 
are too low to sustain a large biomass. 

In support of this descriptive analysis, variances of the σo and the 
normalized NDVI, soil moisture and soil temperature, and correlation 
coefficients between the original variables were calculated and are 
presented in Table 7-1 for both the grassland and wetland. Here, the 
variance, s2, and correlation coefficient, ρ, are defined by:  

( )2
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−
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∑ ∑
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where n is the number of observations, x and y represent the 
independent variables (e.g. σo, NDVI, soil moisture and temperature) 
and the overbar indicates the mean of a variable.   

As expected, Table 7-1 shows that, for the grassland σo, the 
largest ρ’s are obtained with the soil moisture. However, for the 
wetland, the statistics computed between σo and soil temperature, 
and between σo and soil moisture are comparable. Further, it should 
be noted that, although some correlation is observed between the soil 
temperature and grassland σo during winter, low statistics are 
obtained. An explanation is that very little correlation exists between 
the soil temperature and σo during the monsoon, which reduces the 
overall value of ρ.  

A quantification of the relationship between land surface 
conditions and temporal σo variations requires also considering the 
cross-correlation between states. For example, a high ρ of 0.85 
(wetland) and 0.83 (grassland) are found between the NDVI and soil 
temperature. Thus, the NDVI contains similar information for 
describing the σo variations as the soil temperature measurements. A 
more thorough evaluation of the impact of the three land surface 
states on the σo is performed through a multivariate regression of 
four empirical linear models, which are defined as follows:  

Model 1: mod1
o

dBA smσ = ⋅  (7.5) 

Model 2: mod2
o

dB dBA sm B NDVIσ = ⋅ + ⋅  (7.6) 

Model 3: mod3
o

dB dBA sm C STEMPσ = ⋅ + ⋅  (7.7) 

Model 4: mod4
o

dB dB dBA sm B NDVI C STEMPσ = ⋅ + ⋅ + ⋅ (7.8) 
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where, smdB is the rescaled soil moisture [dB], NDVIdB is the 
rescaled NDVI [dB], STEMPdB is the rescaled soil temperature [dB], A, 
B and C are empirical regression coefficients and σo

mod1, σo
mod2, σo

mod3 

and σo
mod4 are the simulated σo using model 1, 2, 3 and 4, 

respectively.  
 
Table 7-2 Regression coefficients obtained for four linear models by 
minimizing the RMSD calculated between the modelled and measured 
σo over a Tibetan grassland and wetland for the period 10 September 
2005–30 July 2005 and RMSD computed separately for calibration 
(56 points) and validation (61 points) periods. 
 

A B C 
RMSD [dB] 

Calibration Validation 

Grassland 

Model 1 0.986 - - 1.92 1.35 
Model 2 0.821 0.169 - 1.84 1.32 

Model 3 0.610 - 0.437 1.73 1.55 

Model 4 0.604 –0.009 0.456 1.73 1.56 

Wetland 

Model 1 0.792 - - 2.26 2.24 
Model 2 0.448 0.394 - 2.11 1.90 

Model 3 0.368 - 0.561 2.01 1.63 

Model 4 0.363 –0.041 0.612 2.01 1.64 

 
The regression coefficients are fitted by minimizing the root mean 

squared difference (RMSD) between the modelled and measured σo 
for the period 10 September 2005 to 30 July 2006 (56 points). The 
optimized regression coefficients for the grassland and wetland are 
presented in Table 7-2. The RMSD values obtained for the calibration 
and validation (61 points) periods are also given in Table 7-2. A 
comparison of these RMSD’s shows, somewhat surprisingly, a better 
agreement of modelled and measured σo for the validation set. This 
can explained by the larger σo and soil moisture variations measured 
over short time scales included in the calibration set.  

Further, Figures 7-6 and 7-7 present plots of the modelled and 
measured σo against time for the grassland and wetland, respectively. 
In these plots, absolute differences between the modelled and 
measured σo (Δσo) and the standard deviation of the σo within the 
defined areas (stdev σo) are given on the secondary y-axis. The stdev 
σo is used, here, to represent the various sources of uncertainty 
within the mean σo values, such as the applied incidence angle 
normalization, spatial representation, speckle and calibration of the 
ASAR instrument. On average, this stdev σo is 1.38 and 1.65 dB for 
the grassland and wetland, respectively. 
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Figure 7-6 Modelled and measured grassland σo plotted against time, 
whereby the modelled σo is obtained through a multivariate 
regression of four linear models. On the secondary y-axis the stdev 
σo and the Δσo are plotted. 
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Figure 7-7 Same as Figure 7-6 except the multivariate regression 
results of the wetland are shown. 
 

Figure 7-6 shows that soil moisture is the dominant land surface 
state affecting the grassland σo, which is also supported by the large 
values of A (0.986–0.604). Including the NDVI in the empirical model 
reduces the RMSD obtained for both the calibration and validation 
periods, but only by 0.08 and 0.03 dB, respectively. Adding the soil 
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temperature to the linear models leads to a more significant reduction 
of the RMSD (on averaged 0.20 dB), but results in an equally large 
RMSD increase for the validation period. In the calibration set, soil 
temperature and σo increments are partially correlated during the 
winter, which was previously attributed to the melting of frozen soil 
water. These freeze/thaw effects are less marked in the winter 
season included in the validation set. This causes a bias in the winter 
period of the validation set and explains the difference between the 
calibration and validation RMSD values. Further, it should be noted 
that relatively large Δσo values (up to 7.0 dB) are obtained in 
summer when the soil moisture conditions are wetter. Since the 
regression models with NDVI do not yield significantly better results, 
it is assumed that differences in the spatial representation of the soil 
moisture and grassland σo cause this larger Δσo.  

As is indicated by the lower A values (0.792 for Model 1 to 0.363 
for Model 4), the impact of soil moisture on σo is less pronounced for 
the wetland. With Model 1, a systematic underestimation of the σo is 
obtained during the winters because of the different dynamics of the 
soil moisture measurements and the wetland conditions. The largest 
discrepancies between measured and actual wetland soil moisture are 
expected to occur when the temporal soil moisture variability is high, 
which is during the monsoon. To compensate for these differences, 
the regression of Model 1 results in a bias towards the summer σo 
values. This bias is somewhat reduced by including NDVI in the 
regression (Model 2). The largest improvement is, however, obtained 
through incorporation of the soil temperature (Model 3), while adding 
the NDVI into the linear model (Model 4) does not further improve 
the results. 

This multivariate regression illustrates that, within linear models, 
the NDVI contributes only a little to explaining the temporal σo 
variability observed over Tibetan grassland and wetland areas. Over 
the grassland, σo is mostly affected by the soil moisture and the 
wetland σo is best described by the annual soil temperature cycle, 
while the soil moisture impact is less dominant. Comparison of RMSD 
with stdev σo shows that the regression results are acceptable, but 
could be better when using a more physically-based modelling 
concept such as the ones applied in Chapters 5 and 6. Besides, 
differences in the spatial representation of the point-scale soil 
moisture measurements and the spatially-averaged σo values also 
explain part of the somewhat large RMSD values.  

7.6 Conclusions 
The impact of land surface states on spatial and temporal σo 

variability measured by ASAR has been analysed for four spatial 
domains on the Tibetan Plateau. The selected spatial domains have 
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areas of 30x30, 5x5 km2 and 1x1 km2 (two domains). The 30x30 km2 
and 5x5 km2 domains are covered by a mixture of grasslands and 
wetlands, while for the 1x1 km2 domain a grassland and wetland have 
been selected.  

The temporal evolution of σo observed over the 1x1 km2 grassland 
and wetland areas is studied to identify its relation to land surface 
states. Over the grassland as well as wetland, the lowest σo values 
are obtained during winters, because, in this season, the soil water is 
predominantly frozen resulting in dielectric properties that are 
comparable to dry soil conditions. Towards the summer, the wetland 
σo increases gradually and reaches its maximum extent when the 
monsoon is at peak intensity, while the grassland σo in the summer is 
characterized by large temporal variations. This contrast in the 
grassland and wetland temporal σo variability is attributed to the 
accumulation of runoff in wetlands and the short dry-down cycles of 
the grasslands.  

The relation between the spatial σo variability and the land surface 
conditions is evaluated by comparing the mean σo

 with the stdev 
measured in the four domains. This results in very specific triangular 
data point distributions for all domains. The decrease of σo stdev as 
the mean σo decreases is observed because dry and freezing 
conditions have an impact on large areas and are typically spatially 
homogeneous. During the monsoon, however, intensive rain showers 
may saturate large areas. A decrease in the σo stdev is, therefore, 
observed as the mean σo approaches its maximum value. This impact 
of the land surface dynamics during monsoon and winter periods on 
the σo variability is consistently observed for all four domains.  

When these σo dynamics are considered to be representative for 
the soil moisture conditions, a consequence of the reported results is 
that the relationship between mean soil moisture and the spatial 
variability is not always uniquely defined. In downscaling coarse 
resolution soil moisture products changes in the relationship between 
the mean soil moisture and spatial variability should be considered, 
and should ideally be obtained on additional near real time data 
sources. In this context, SAR data could be utilized to provide soil 
moisture information within the coarse passive microwave and 
scatterometer footprints. 

Moreover, a multivariate regression analysis is presented to 
statistically quantify to contribution of specific land surface states 
(e.g. biomass, soil moisture and temperature) in describing the 
temporal σo variations observed over the 1x1 km2 grassland and 
wetland areas. Here, the biomass is represented by the NDVI as a 
proxy. This analysis shows that the NDVI explains only a small 
portion of the σo variations over both the Tibetan grassland and 
wetland. Further, a discrepancy is noted between the annual cycle of 
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the NDVI and the wetland σo. The NDVI increase starts later than the 
wetland σo and the decrease is observed earlier than that for wetland 
σo. This supports the hypothesis that the land surface conditions in 
the wetland are strongly affected by runoff from upstream areas 
produced by melt in spring and by rainfall in the post-monsoon 
season. The temporal σo variability observed over the grassland σo is 
best described by the soil moisture, while a small correlation is found 
with the soil temperature.  
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8 Soil moisture mapping over the Central 
Tibet  

 
This chapter is based on: 
 
Van der Velde, R., Su, Z., Van Oevelen, P.J., Wen, J., Ma, Y., “Soil moisture 

mapping over the central Tibet using a time series of ASAR WS 
images”, to be submitted to Remote Sensing of Environment.  

 

8.1 Introduction 
The influence of land surface state on the time series of ASAR WS 

data was discussed in the previous chapter for a typical grassland and 
wetland on the Tibetan Plateau.  This analysis showed that for both 
land covers the temporal σo variability is best described by soil 
moisture, while the effects of vegetation has only a minor impact. 
Here, this soil moisture information included in the ASAR data set is 
used for soil moisture mapping. 

Considerable success in retrieving soil moisture from both active 
and passive microwave observations has previously been obtained at 
continental and global scales (e.g. Jackson et al. 1999, Woodhouse 
and Hoekman 2000, Owe et al. 2001, Le Hegerat 2002, Wen et al. 
2003). As a result, space borne microwave instruments capable of 
monitoring soil moisture globally have either become recently 
operational (e.g. ASCAT and SMOS) or are approved for launch (e.g. 
Aquarius, SMAP). This will open up new opportunities for monitoring 
soil moisture globally. However, a fairly low spatial resolution is 
characteristic for the measurements gathered by these sensors, 
which is on the order of tens of kilometers. 

An alternative is provided by active microwave measurements 
obtained via the SAR technique, which can be processed to 
resolutions of several meters. A large number of studies have 
demonstrated the potential of retrieving soil moisture at a resolution 
in the order of tens of meters (e.g. Quesney et al. 2000, Le Hegerat 
et al. 2002, Oldak et al. 2003). This high resolution poses, however, 
restrictions on the revisit times, which were 35 days and longer for 
the first generation SAR systems (e.g. RadarSat-1, ERS-1/2, JERS). 
Soil moisture retrieved at those temporal resolutions has only a 
limited hydrological applicability (e.g. Hoeben and Troch 2000, 
Walker and Houser 2004).  

In the design of the following generation of space borne SAR 
systems this issue was addressed by incorporating imaging modes for 
measuring σo at various spatial resolutions, swath widths and revisit 
times.  The high resolution, multi-angular σo measurements collected 
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by RadarSat-1/-2 and ASAR have already been used extensively for 
soil moisture retrieval purposes (e.g Mattia et al. 2006, Alvarez-
Mozos et al. 2006, Baghdadi et al. 2006, Zribi et al. 2007, Rahman et 
al. 2008). The combination of different image swaths offers the 
possibility for obtaining a higher temporal resolution over a specific 
study area.  These high spatial resolution imaging modes are, 
however, less suited for monitoring purposes over large spatial 
domains because its spatial coverage is restricted to swath widths of 
about 100 km.  

In this context, wide swath (WS) and global monitoring (GM) 
modes provide a good compromise between the spatial coverage 
(400 km), resolution (150 m for WS and 1000 m for GM) and revisit 
time (3-4 days). A consequence of operating at a wider swath is, 
however, the rather large view angle range (about 16-43 degrees). In 
most studies, SAR observations collected over a wide range of view 
angles are normalized to a specific angle. In the previous chapter, a 
theoretical approach was adopted for this normalization. In other 
studies (Baup et al. 2007b, Löw et al. 2006, Pathe et al. 2009) 
regression functions between the σo and incidence angle are used. A 
drawback of such normalizations is that a specific angular response 
has to be assumed. This angular response is, however, also 
represented within physically based scattering models. Zribi and 
Dechambre (2002) and Rahman et al. (2008) use this property of 
models to derive a parameter for estimating the surface roughness, 
which is used for the retrieval of soil moisture from high resolution 
multi-angular σo measurements.  

In this chapter, a similar approach is adopted for estimating the 
roughness parameterization of the AIEM surface scattering model and 
the retrieval of soil moisture. Three ASAR WS images collected at 
different view angles under assumed constant land surface conditions 
is used to invert the roughness parameters of the AIEM model. Then, 
assuming the surface roughness to be temporally stable and the 
effects of vegetation to be negligible, soil moisture is retrieved from 
the ASAR data set by inverting the AIEM model. Validation of the 
retrievals is performed quantitatively against measurements collected 
at four different stations within a 10x10-km2 domain and, for the 
study area described in Chapter 4, qualitatively by evaluating the 
spatial distributions of the retrievals.  

8.2 Retrieval algorithm  
The applied retrieval method is based on the AIEM model, which 

requires, apart from dielectric properties, a surface roughness 
parameterization and the sensing configuration as input, including the 
incidence angle. Minimization of the absolute difference between the 
ASAR and AIEM simulated σo is used to invert the dielectric constant. 



Chapter 8 

 97

This dielectric constant is, then, converted into soil moisture using 
the mixing model by Dobson et al. (1985) and soil texture 
information obtained from 1 km resolution global maps (Reynolds et 
al. 2000). Figure 8-1 presents a diagram of this retrieval algorithm. 
The algorithm is, thus, solely based on the AIEM surface scattering 
model. This implicates that the vegetation effects on ASAR WS σo 
measurements are assumed negligible, which is justifiable based on 
the results presented in the previous chapter. 

 

Figure 8-1 Outline of the soil moisture retrieval algorithm. 

8.3 Surface roughness estimation 
Crucial for the performance of the described retrieval algorithm is 

a proper estimation of the surface roughness parameters needed for 
the AIEM. As explained in Chapters 2 and 6, the AIEM roughness 
parameterization consists of the rms height (s), autocorrelation 
length (l) and autocorrelation length function (ACF). It is shown in 
Chapter 6 (and other investigations cited therein) that simulations 
with the Exponential ACF characterize the angular response over bare 
soil surfaces best. An Exponential ACF is, therefore, assumed as input 
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for the AIEM. This leaves the roughness parameters, s and l, as the 
two remaining unknowns for retrieving the dielectric constant (or soil 
moisture).  

For an agricultural setting, the effect of temporal roughness 
variations on soil moisture retrievals was discussed in Chapter 6. This 
showed that the roughness parameters estimated at the beginning of 
the growth cycle are representative for the roughness conditions 
during the entire growth cycle. Surface roughness conditions in 
natural environments are typically less variable than the ones in 
agricultural fields. This justifies the use of time-invariant 
parameterizations for the Tibetan wetlands and grasslands.  

Even with assuming an Exponential ACF the estimation of a time-
invariant parameterization remains a challenge. The dielectric 
constant (or soil moisture) has to be known for the σo simulation and 
the angular σo response included in the Tibetan ASAR WS data set 
needs to be properly simulated. Also, view geometry in azimuth 
direction should be taken into consideration for the roughness 
estimation, which is different for the ascending and descending orbit.   

 
Table 8-1 Dates of ASAR WS acquisition used for surface roughness 
estimation and the view angle range at which the study area was 
covered.  

Ascending  Descending  

Date View angle range  Date View angle range  
[degrees] [degrees] 

02/15/2006 17.7 – 21.2 01/13/07 25.7 – 29.0 
02/18/2006 26.6 – 30.1 01/26/07 38.2 – 42.5 
02/21/2006 35.0 – 38.6 01/29/07 28.7 – 33.4 

 
Information on the angular σo response is embedded within the 

series of ASAR WS images, which are collected at different view 
angles over the selected study area. Then, a period should be 
selected during which ASAR collected data at different view angles 
and the soil dielectric constant can be estimated with a reasonable 
accuracy. Such episode is most likely to be found during winters 
because in this season weather on the plateau is cold and dry. The 
water content present in the soil surface is, thus, very low and/or in 
frozen state. Under these conditions the soil dielectric constant is 
comparable to a dry soil.  As these winter conditions often affect 
large spatial domains, it can be assumed that these dry soil dielectric 
properties are valid for the entire study area.  

A sequence of ASAR WS acquisitions collected during the winter 
period can in potential be used for estimating the roughness 
parameters. This sequence of ASAR WS images should, however, be 
selected with care because an thawed soil surface has a significantly 
larger dielectric constant than a frozen soil. Moreover, the vast 
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amount of water present in the wetlands takes a long period of 
subzero temperatures to become completely frozen. This restricts the 
months suitable for roughness estimation to January and February, 
because before January water in the wetlands might not yet be frozen 
and after February the surface layer may melt.  

Taking these restrictions into account, a set of three images 
collected in February 2006 and in January 2007 has been selected for 
estimating the roughness parameters, s and l, for the ascending and 
descending passes, respectively. Table 8-1 shows the date and view 
angle range, at which the study area was covered by ASAR. These 
two specific ASAR data sets have been selected because the images 
were acquired within a short period from each other and their view 
angle ranges cover a large portion of the total range.  

From these two series of ASAR images, independent roughness 
parameterizations are estimated for the ascending and descending 
passes by minimizing the averaged absolute differences between the 
ASAR and AIEM simulated σo collected at three view angles. For these 
AIEM simulations, the dielectric constant is assumed to be equivalent 
to that of a dry soil with a soil moisture content of 0.03 m3 m-3. A 
schematization of this method for estimating the surface roughness is 
presented in Figure 8-2. 

 
Figure 8-2 Schematization of the method used for the estimation of 
surface roughness parameters. 
 

Validation of the inverted roughness parameterizations is not 
possible due to the absence of in-situ measurements. An indication of 
the range and distribution of the derived parameterizations is, 
however, given in the form of probability density function (PDF’s) for 
the s and l in Figure 8-3. In addition, the cumulative probability of the 
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averaged absolute differences between the measured and the 
simulated σo is provided in Figure 8-3. The PDF’s obtained for the 
roughness parameters show that the majority of the s values are 
centred on 0.38 and 0.30 cm for ascending and descending passes 
and peak of l values is located at about 1.7 and 0.8 cm, respectively. 
Further, the distribution of the parameters indicates a higher 
occurrence of larger values for both parameters, which is best 
represented by an exponential distribution function. This could, 
however, also be a consequence of assuming an exponential ACF.   

The retrieved s values are of the same order of magnitude as the 
parameterizations presented in Chapter 6. However, the presented l 
parameters are significantly lower than the ones reported in Chapter 
6. The soil surface of the corn field, for which the surface roughness 
was estimated in Chapter 6, has a distinctive periodic structure. The 
autocorrelation between surface height variations in the corn 
manifests itself, therefore, at a larger spatial scale for this agricultural 
field than for more randomly distributed roughness of natural 
environment. Therefore, lower l values are obtained for the Tibetan 
surface.  

Figure 8-3 Probability density functions for the retrieved roughness 
parameters (s and l) and cumulative probability for the averaged 
absolute differences between the measured and simulated σo. 
 

The cumulative probability shows that the averaged absolute σo 
differences for the ascending as well as descending passes is less 
than 0.5 dB for more than 90% of the parameterizations. This error 
level is similar to the radiometric stability of ASAR σo in the WS. The 
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combination of reasonable parameter values and small differences 
between the measured and simulated σo suggests that roughness 
parameters are reliably estimated.  

8.4 Soil moisture mapping and validation 
With the roughness parameters, s and l, as the main input for the 

algorithm described in Section 8.2, soil moisture is retrieved from the 
time series of ASAR WS images. Firstly, the reliability of the resulting 
soil moisture products is assessed by evaluating the time series of 
retrieved and measured soil moisture. Figure 8-4 presents the time 
series of soil moisture measured and retrieved at four stations. As 
described in Section 4.3, South station is located in a wetland and did 
not record any soil moisture measurements at the 2.5 cm soil depth. 
For this station, the soil moisture measured at 7.5 cm is, therefore, 
used for validation. For the stations (e.g. East, North and Naqu) 
situated within a grassland environment the soil moisture measured 
at 2.5 cm are presented.  

Figure 8-4 shows that the soil moisture retrieved over the wetland 
site (south station) increases rapidly during spring 2005 and 2006, 
and remains wet (> 0.3 m3 m-3) throughout a large portion of the 
monsoon. In August 2005, however, the wetland soil moisture 
retrievals are close to 0.1 m3 m-3, while the retrievals over the 
grassland sites reach their peak values of about 0.2 m3 m-3. It is 
likely that during this period the soil surface in the wetland was 
flooded. A water surface reflects microwave specularly causing lower 
σo from the wetland and as a result the retrieved soil moisture is low. 
Similarly, there is a drop in wetland soil moisture in the beginning of 
July 2006. In this case, however, the retrievals from the grassland 
sites are also low. A prolonged period with less rain is most likely the 
cause for those low soil moisture values retrieved from the wetland 
site.  

Unfortunately, the soil moisture measurement at South station 
started on 27 July 2006 and are, thus, not available for validation. 
For the second part of 2006, however, the measurements confirm 
that surface conditions in the wetland remain wet throughout the 
monsoon season. Also, the gradual soil moisture increase of the 
retrievals during 2007 spring agrees well with the coinciding 
measurements. 

The weather during the monsoon affects the soil moisture 
dynamics of the grassland sites differently. As explained before, dry-
down cycles on the Plateau are short due to a high evaporative 
demand and a large hydraulic conductivity of the soils. Both the 
retrieved and measured soil moisture at the grassland sites has, 
therefore, a larger temporally variability. On a seasonal time scale, 
the temporal evolution of the retrievals is in agreement with the 



Soil moisture mapping over the Central Tibet 

 102 

measurements. During extreme wet episodes, such as August 2005, 
the retrieved soil moisture is high on average and during prolonged 
dry periods, such as July 2006, the retrieved soil moisture is low. On 
smaller time scale, however, large discrepancies are noted between 
the measured and retrieved soil moisture. The measurements are 
collected at single location, while soil moisture is retrieved from σo 
with a 75 m spatial resolution. Because spatial soil moisture 
variability is large, the difference in scales of the measurements and 
retrievals contributes to the somewhat larger deviations observed for 
the grassland sites. 

For quantification of the differences between the retrieved and 
measured soil moisture, separate scatter plots for the wetland and 
grassland sites are presented in Figure 8-5. The basic statistics 
related to this comparison, such as the RMSD, bias and R2, are given 
in Table 8-2. These statistics are also shown for the individual 
stations. 
 
Table 8-2 Statistics computed between the retrieved and measured 
soil moisture. 

`  Land cover Soil moisture station 
  wetland grassland South East North Naqu 

Number 
of pairs 

[#] 63 236 63 58 60 118 

RMSD [m3 m-3] 0.060 0.032 0.060 0.027 0.026 0.034 
Bias [m3 m-3] -0.018 0.005 -0.013 -0.008 0.003 0.012 
R2 [-] 0.667 0.544 0.667 0.668 0.642 0.503 

 
The scatter plots illustrate that positive relationships exist 

between the soil moisture measured and retrieved from both the 
wetland and grassland site(s). This is supported by the R2 that varies 
from 0.667 for South station to 0.503 for Naqu station, which is of a 
similar level as has been previously reported (e.g. Löw et al. 2006, 
Baup et al. 2007b, Pathe et al. 2009). Comparable to the retrievals 
presented in Chapter 5, the retrievals overestimate the 
measurements in the wetland as well as the grassland under wet 
conditions. As explained before, this is due to the fact that the AIEM 
σo is less sensitive to soil moisture under wet conditions. In the 
scatter plot of the grassland sites also a significant underestimation of 
the measured soil moisture is noted under dry conditions. A large 
vertical soil moisture gradient could be an explanation. It is very 
common that a shallow topsoil layer may become very dry, while 
deeper in the profile the soil remains somewhat wet. A particular 
volume of the topsoil is observed by the incident microwave 
radiation, while the sensor is place at a soil depth of 2.5 cm.  
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Figure 8-4 Time series of soil moisture measurements and retrievals 
from one wetland site (South station) and three grassland sites 
(East, North and Naqu station). 

 
In spite of these differences between the retrievals and 

measurements, the obtained uncertainty levels are comparable to the 
results of previous SAR based soil moisture retrieval studies (e.g. 
Dubois et al. 1995, Shi et al. 1997, Bindlish and Barros 2000, Thoma 
et al. 2006, Rahman et al. 2008). RMSD’s of 0.060 and 0.032 m3 m-3 
are computed for the wetland and grassland sites, respectively, and 
the biases are smaller than 0.02 m3 m-3. The wetland RMSD is, thus, 
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almost two times larger than grassland RMSD. The measured soil 
moisture ranges in these two land covers are, however, also different 
and varies from 0.027 to 0.38 m3 m-3 for the wetland site and from 
0.026 to 0.210 m3 m-3 for the grassland sites.  When this is taken into 
account through the division of the RMSD by the dynamic soil 
moisture range, the retrieval uncertainties obtained over the wetland 
and grassland sites are quite similar, 16.9 and 17.3 % respectively 

Figure 8-5 Scatter plots between the retrieval and measured soil 
moisture; on the left results of the wetland site and on the right 
results of the grassland sites. 
 

So far the time series of soil moisture retrievals was only 
discussed for the sites at which soil moisture measurements are 
available. These stations are located in a 10x10 km2 area about 25 
kilometers southwest of Naqu city and, thus, do not give a good 
representation of the spatial distribution in the entire study area. As 
an illustration of the retrieved spatial distributions, a selection of the 
soil moisture maps obtained during the 2005 and 2006 monsoon 
seasons are presented in Figure 8-6 and 8-7, respectively. The maps 
are selected in such way that for about every 30 days three images 
are shown starting from the beginning of May till the end of October.   

The series of soil moisture images for both 2005 and 2006 clearly 
shows the impact of the monsoon development on the retrieved soil 
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the study domain, however, already elevated soil moisture levels can 
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0 0.1 0.2 0.3 0.4 0.5

Measurements [m3 m-3]

0

0.1

0.2

0.3

0.4

0.5

Re
tr

ie
va

ls
 [

m
3  

m
-3

]

grasslandwetland

0 0.1 0.2 0.3

Measurements [m3 m-3]

0

0.1

0.2

0.3

Re
tr

ie
va

ls
 [

m
3  

m
-3

]



Chapter 8 

 105

Figure 8-6 Series of soil moisture maps retrieved from ASAR 
acquisitions during the 2005 Monsoon. 

 
A soil moisture increase in areas other than the wetlands is 
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2005 such moisture increase is noted on May 14th, while it occurs on 
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for both 2005 and 2006, except in case of some scattered rain 
events.  

Figure 8-7 Series of soil moisture maps retrieved from ASAR 
acquisitions during the 2006 Monsoon. 
 

In 2006, this large-scale soil moisture increase is observed on July 
11, while in July 2005 the southern part of the study domain still 
includes a large dry region. The retrieved soil moisture from the 
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wetlands, which results in lower σo measurements due to specular 
reflectance. Conversely, significantly lower soil moisture values are 
retrieved at the end of July and the start of August in 2006. Only, the 
August 31 map shows comparable soil moisture levels as in 2005. 
These differences between the 2005 and 2006 dynamics were also 
noted in analyzing the time series of soil moisture retrievals. The 
gradual decline in soil moisture in October indicates the end of the 
monsoon in 2005 and 2006. During this dry-down, the moisture in 
the wetlands is most persistent.  

8.5 Conclusions and discussion 
Soil moisture is retrieved from a time series of σo images acquired 

by the ASAR in the WS mode over the central part of the Tibetan 
Plateau. The employed retrieval algorithm is based on the AIEM, 
whereby the angular σo response is explicitly modelled instead of 
normalizing for the view angle. Within this retrieval procedure the 
effects of vegetation on the ASAR σo measurements are, thus, 
assumed to be negligible, which is justified based on the results 
presented in Chapter 7.  

The surface roughness parameterization needed for AIEM 
simulations is inverted from a sequence of three σo measurements 
collected at different view angles and assumed dry conditions. As the 
dielectric properties of frozen soils are equivalent to the ones of dry 
soil, this assumption will be valid during the cold and dry Tibetan 
winters. As such, a set of three images collected in February 2006 
and in January 2007 has been used to invert the surface roughness 
for the ascending and descending passes, respectively. This inversion 
resulted for more than 90% of the parameterizations in an absolute 
difference between the ASAR and simulated σo of less than 0.5 dB for 
the ascending as well as descending orbits. These roughness 
parameters have been used as input for the retrieval of soil moisture 
from the ASAR σo through inversion of the AIEM model.  

An analysis of soil moisture retrievals and measurements 
collected at a wetland site and three grassland sites shows that on a 
seasonal time scale the retrievals are in agreement with the 
measurements. The soil moisture retrieved over the wetland site 
displays a sharp increase in spring and sharp decrease at the end of 
the monsoon, and remains, in general, fairly stable near saturation 
throughout the monsoon. Only, in case of extreme dry and wet 
episodes the retrieved soil moisture is lower. This might seem 
somewhat contradictory because the σo over wet soils is higher than 
for dry soils. However, under wet conditions the soil surfaces in the 
wetland can be flooded and as a water surface behaves as a specular 
reflector the ASAR σo and the retrieved soil moisture are lower.  
Similarly, the soil moisture retrieved over the grassland sites 
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increases, on average, in spring and decreases at the end of the 
monsoon. However, due to the high evaporative demand and the lack 
of a water supply from upstream areas, both the retrieved and 
measured soil moisture from the grassland sites have a much larger 
temporal variability as compared to the wetland. 

A direct comparison of the measured with retrieved soil moisture 
resulted in RMSD’s of 0.060 and 0.032 m3 m-3 for the wetland site 
and the three grassland sites, respectively. These error levels are 
comparable to the results of previous SAR based soil moisture 
retrieval studies. It should, however, be noted that the large RMSD 
obtained for the wetland site is, somewhat misleading because of the 
large difference in the measured soil moisture ranges at the wetland 
and grassland sites. When the RMSD is divided by the soil moisture 
range the uncertainties levels obtained for the wetland and grassland 
sites are quite similar; 16.9 and 17.3%, respectively.    

In conclusion, the application of a retrieval algorithm based only 
on a surface scattering model has resulted in retrieval accuracy 
comparable to previous SAR based soil moisture retrieval studies. 
With a surface roughness parameterization derived from the time 
series of σo measurements the applied algorithm requires no fitting. 
Various SAR based retrieval applications (e.g. Baup et al. 2007b, Löw 
et al. 2006) adopt fitted regression functions as view angle 
normalization and need an a priori specification of the σo change due 
to soil moisture (e.g. Pathe et al. 2009). Within the presented 
algorithms, these two components of the soil moisture retrieval 
process are modelled by AIEM. 

Of course, the applicability of this algorithm is not unlimited. The 
effects of vegetation are, for example, assumed to be negligible and 
the surface roughness parameterization is inverted assuming dry soil 
moisture conditions. The validity of the algorithm is, therefore, 
restricted to areas with limited vegetation growth and the series of σo 
images should at least include three images collected during a dry (or 
frozen) period. This being said the algorithm is suited for monitoring 
soil moisture over areas with sparse vegetation and a well defined 
period with subzero temperatures. Requirement for this monitoring 
capability is, however, a consistent temporal resolution of SAR 
observations comparable to or better than the ASAR WS. 
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9 Evaluation of the Noah soil water flow 
scheme 

 
This chapter is based on: 
 
Van der Velde, R., Su, Z., Rodell, M., Ek, M.B., Bosveld, F.C., “Evaluation of 

the Noah land model soil water flow scheme”, in revision for Journal of 
Hydrometeorology.  

 

9.1 Introduction 
Characteristic for most LSM’s is the comprehensive description of 

‘above-ground’ processes, while the approaches for simulating the 
soil processes have primarily been selected for numerical efficiency. 
For example, the number of soil layers is limited and extends down to 
a few meters (e.g. De Rosnay et al. 2000); the presence of ground 
water reservoirs is often ignored (e.g. Gulden et al. 2007); and the 
vertical soil heterogeneity is neglected (e.g. Yang et al. 2005, Van der 
Velde et al. 2009). Further, the diffusivity form of Richards’ equation 
is employed by most LSM’s, which permits the simulation of the soil 
water flow using soil moisture as the only prognostic variable; 
otherwise also soil water potentials would be required (e.g. Van Dam 
and Feddes 2000). Moreover, the soil hydraulic functions (SHF’s) are 
computed using the Campbell (1974) soil hydraulic model (SHM), 
while Van Genuchten’s (1980) SHM is more accepted in hydrology 
and soil physics.  

In this chapter, two specific aspects of the Noah soil water flow 
scheme are discussed. Firstly, the choice of the scheme used for 
integrating the water fluxes computed by the highly non-linear 
Richards’ equation is addressed. Noah employs the diffusivity form of 
Richards’ equation, which simulates the soil water flow through a 
convective and diffusive component. Gravity is the force driving 
convective flow and diffusive flow is driven by the soil moisture 
gradient. Thus, convective flow transports soil water always deeper 
into the profile, while depending on the soil moisture gradient 
diffusive flow can transport water downwards or upwards.  

The diffusive component enables transportation of soil water from 
deeper soil layers towards the surface, which is also known as 
capillary rise. An adequate representation of this mechanism is 
indispensable for the simulation of water limiting evaporative 
conditions (e.g. Walker et al. 2001); especially during droughts. 
Moreover, the underestimation of capillary rise can lead to a hydraulic 
decoupling of the root zone and the deeper soil layers causing slow 
soil moisture spin ups particularly in dry regions, such as deserts 
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(e.g. Rodell et al. 2005). Especially, for models with a limited number 
of soil layers the selection of an appropriate vertical interpolation 
scheme is of importance to ensure a proper simulation of water 
fluxes, which will also be influenced by the number of soil layers.  

Secondly, a comparison of Noah simulations with SHF’s computed 
by the Campbell and Van Genuchten SHM’s is presented. The SHF’s 
used in soil water flow scheme are based on a soil texture dependent 
parameterization and the SHM. The parameterization is typically 
derived from soil textural information through application of a 
pedotransfer function (PTF). National and international databases of 
measured SHF’s have been utilized for the development of PTF’s (i.e. 
Cosby et al. 1984, Carsel and Parrish 1988, Schaap and Leij 1998, 
Wösten et al. 2001). Previously, Soet and Stricker (2003) and 
Gutmann and Small (2005) investigated the land surface modeling 
uncertainties related to the usage of those PTF’s. 

The SHM basically shapes the the SHF’s. LSM’s often use the 
Campbell (1974) SHM. Campbell describes the relationships from the 
air-entry soil water potential (ψs) and contains, thus, a sharp 
discontinuity near saturation. A more complete solution is provided by 
Van Genuchten (1980), which fits the measured SHF’s better. It 
should, however, be noted that differences between these two SHM’s 
not only influences the shape of the SHF, but also lead to 
discrepancies among the parameterizations.  

Previously, Cuenca et al. (1996) and Braun and Schädler (2005) 
investigated the impact of the SHM differences on the boundary layer 
development. Cuenca et al. evaluate the SHM’s for the entire range of 
initial soil moisture conditions and found a substantial variability 
among the SHM’s; depending on the initial soil moisture content up to 
300 and 200 W m-2 for the λE and H, respectively. For a dry soil, 
Braun and Schädler reported on differences varying -10 to 10 W m-2 
for H and -30 to 10 W m-2 for λE. These results show that the SHM 
employed within ACM’s should be selected with care. It should, 
however, also be noted that both studies employed standard PTF’s 
developed for a specific SHM and ignore, thus, the differences 
between parameterizations.  

Shao and Irannejad (1999) found for the Atmospheric and Land 
Surface Interaction Scheme (ALSIS) LSM that resolving the 
parameter discrepancies eliminates a considerable portion of the 
disagreement between the SHM’s. They, however, constrained the 
simulation of root wate uptake reduction by fixed soil moisture levels 
instead of the soil water potential (ψ). As such, an important effect of 
differently shaped retention curves is disregarded in their evaluation. 
Moreover, the model structure of Noah and ALSIS are significantly 
different. Most notably, ALSIS uses a Kirchoff transformed Richards’ 
equation to simulate the soil water transport, while Noah employs the 
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diffusivity form. We, therefore, argue that the conclusions drawn by 
Shao and Irannejad may not be transferable to other LSM’s and the 
use of a specific SHM should be evaluated for each LSM 
independently.  

In this chapter, the influence of the vertical interpolation scheme 
and the employed SHM on the surface energy and water budget is 
evaluated using offline Noah simulations. Meteorological 
measurements collected at the Cabauw station have been used to 
force the model over the period from 1 January to 5 September 2003. 
This includes the 2003 European heat wave and will, thus, result in a 
simulated range from wet to dry conditions.  

Two types of simulations have been performed. Firstly, the default 
SHF’s have been utilized in combination with initial soil moisture 
conditions set to saturation for simulating a hypothetical dry down 
with three different schemes for vertically integrating soil water fluxes 
and different numbers of soil layers (3-20 layers). Secondly, also for 
saturated initial soil moisture conditions, Noah has been run for five 
soil texture classes of the Dutch PTF (Wösten et al. 2001); the 
Staring Series.  Similar to Shao and Irannejad (1999), Van 
Genuchten parameterizations provided by the Staring Series are 
utilized to derive consistent Campbell parameter sets, for which two 
approaches are adopted.  

9.2 Vertical integration of soil water flow 
As described in Chapter 3, the Noah soil column is by default 2 m 

deep divided over four layers of 0.1, 0.3, 0.6 and 1.0 m increasing in 
thickness towards the bottom. At present, the scheme employed for 
vertical integration of soil water flow is based on calculation of the 
hydraulic conductivity, K, and soil water diffusivity, D, using the soil 
moisture content of the upper soil layer; hereafter referred to as 
‘method A’ and is illustrated in Figure 9-1 (left side). 

This scheme can be questioned for two reasons. Firstly, the 
coefficient D is underestimated when the upper soil layer is drier than 
the bottom one because it decreases strongly and non-linearly with 
the soil moisture content. This reduces the simulated amount of 
diffusive flow (or capillary rise). Secondly, the simulated soil moisture 
contents are defined at the midpoint of the layers. Part of the soil 
water flows, therefore, through the upper and a part flows through 
the bottom layer.  Hence, some sort of averaging of the coefficients K 
and D across two soil layers would seem appropriate. 
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Figure 9-1 Schematization of numerical schemes applied for 
simulation of vertical integration of the soil moisture flow, At 
present, method A is implemented in Noah; Methods B and C are the 
alternatives. 

 
In this thesis, two alternative schemes for vertically integrating 

soil water flow are evaluated. For the first approach, the coefficient D 
is computed using the soil moisture of the upper layer when dθ/dz is 
pointing downwards and the soil moisture content of the lower layer 
when dθ/dz is pointing upwards. This scheme is referred to as 
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‘method B’ and has much similarity with the scheme developed for 
the Noah’s predecessor the OSU LSM (Mahrt and Pan 1984). The 
difference is, however, that they apply method B to both coefficients 
(K and D). For the other scheme, referred to as ‘method C’, weighted 
averages of coefficients K and D are calculated between the two soil 
layers. A similar approach is used in the Simple Biosphere (SiB, 
Sellers et al. 1986) Model, which uses the soil water potential (ψ) 
form of Richards’ equation (Eq. 3-1).  Because the vertical integration 
of soil water flow may also be influenced by the number of soil layers, 
10 discretizations are considered with 3 to 20 layers as listed in Table 
9-1.  

 
Table 9-1 Selected vertical soil layer discretizations. 

# layers layer configuration [m] 
3 layers 0.4 m; 0.6 m; 1.0 m 
4 layers 0.1 m; 0.3 m; 0.6 m; 1.0 m 
6 layers 2 x 0.05 m; 2 x 0.15 m; 0.6 m; 1.0 m 
8 layers 2 x 0.05 m; 2 x 0.15 m; 2 x 0.3 m; 2 x 0.5 m 
10 layer 2 x 0.05 m; 3 x 0.10 m; 3 x 0.2 m; 2 x 0.5 m 
12 layers 2 x 0.05 m; 3 x 0.10 m; 3 x 0.2 m; 4 x 0.25 m 
14 layers 4 x 0.05 m; 4 x 0.10 m; 2 x 0.2 m; 4 x 0.25 m 
16 layers 4 x 0.05 m; 8 x 0.10 m; 4 x 0.25 m 
18 layers 8 x 0.05 m; 6 x 0.10 m; 4 x 0.25 m 
20 layers 10 x 0.05 m; 5 x 0.10 m; 5 x 0.20 m 

9.3 Soil hydraulic functions 
Models  
The general form of the SHM often employed within LSM’s 

describes the ψ-θ relationship (or retention curve) using a power 
curve,  

b

s

ψ
ψ
⎛ ⎞

Θ = ⎜ ⎟
⎝ ⎠

 with  r

s r

θ θ
θ θ
⎛ ⎞−Θ = ⎜ ⎟−⎝ ⎠

 (9.1) 

where, ψs is the soil water potential at which air enters the soil 
matrix [m], θs is the saturated soil moisture content [m3 m-3], θr is 
the residual soil moisture content [m3 m-3] and the parameter b is an 
empirical fitting parameter related to the pore size distribution [-]. A 
non-zero value for θr is considered in the formulation of Brooks and 
Corey (1964), while others assume θr to be zero (e.g. Campbell 
1974, Clapp and Hornberger 1978).  

Application of Eq. 9.1 implies a sharp discontinuity at ψs. Clapp 
and Hornberger proposed, therefore, a two-step function of which 
one part describes the ψ-θ relation up to inflection point and the 
other part is representative for lower ψ values. Van Genuchten 
provides, however, a more flexible solution by describing the ψ-θ 
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relationship over the complete ψ range using a single expression for 
the soil water retention curve,  

( )
1

1

m

nα ψ

⎡ ⎤
Θ = ⎢ ⎥

+⎢ ⎥⎣ ⎦

 (9.2) 

where, α [m-1] and m [-] are empirical parameters, and n equals 
1/(m-1). The parameter α is often considered to be equivalent to the 
inverse of ψs, and m is related to the pore size distribution and, thus, 
to the Campbell b parameter.  

The K - θ and D - θ relationships derived for the Campbell SHM 
are obtained through application of Burdine’s (1953) theory for the 
hydraulic conductivity and can be written as,   

( )
2 3

θθ
θ

+
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

b

s
s

K K  (9.3) 

( )
2

θθ
θ

+
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

b

s
s

D D  (9.4) 

where, Ks is the saturated hydraulic conductivity [m s-1] and Ds is 
saturated soil water diffusivity [m2 s-1] expressed by, 

ψ
θ

⎛ ⎞
= ⋅ ⎜ ⎟

⎝ ⎠
s

s s
s

D b K  (9.5) 

Van Genuchten’s retention function is often applied in combination 
with Mualem’s (1976) theory for the conductivity. Resulting in K – θ 
and D – θ functions that read,  

( ) ( )11
2

2

1 1 m
m

sK Kθ ⎡ ⎤
= Θ − − Θ⎢ ⎥

⎣ ⎦
 (9.6) 

( ) ( ) ( )1 1 1 1
2 1 1 2m m m

m m

sD Dθ
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= Θ − Θ + − Θ −⎢
⎣

 
(9.7) 

with the saturated soil water diffusivity as, 
( )

( )
1 s

s
s r

m K
D

mα θ θ
−

=
−

 (9.8) 

 
Table 9-2 Soil textural properties of the five selected soil classes 
from the Dutch pedotransfer function (after Wösten et al. 2001). 

Description Class* Clay Silt Organic M50** Density 
[%] [%] [%] [μm] [kg m-3] 

Coarse sand O05 - - 0 - 2 220-400 1.5 – 1.7 
Sandy clay O10 18 - 22 - 0 - 3 - 1.3 - 1.5 

Clay O13 50 - 77 - 0 - 3 - 1.0 – 1.4 
Loam O15 - 85 - 92 1 - 3 - 1.1 – 1.6 
Peat O17 - - 60 - 80 - 0.1 – 0.6 

* Soil type assigned in the Staring Series; 
** M50 ~ median of the particle size of the sand faction. 
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Parameterizations  
The Soil Hydraulic Parameters (SHP’s) for the comparison of the 

Campbell and Van Genuchten SHM’s are adopted from the Dutch PTF; 
also referred to as the Staring Series (Wösten et al. 2001). Five soil 
classes of this database are used, which cover a range of textures 
from the finest to coarsest class and include an organic (peat) soil. 
The soil textural properties and Van Genuchten SHP’s of the selected 
classes are given in Tables 9-2 and 9-3, respectively. The Staring 
Series provides only the parameters for the Van Genuchten SHM; 
thus, the Campbell parameterization should be derived.  
 
Table 9-3 Van Genuchten soil hydraulic parameters reported in 
Wösten et al. (2001) for the soil texture classes presented in Table 9-
2. 

Description Class θr θs Ks α n 
[m3 m-3] [m3 m-3] [m d-1] [m-1] [-] 

Coarse sand O05 0.01 0.32 2.500 · 10-1 5.21 2.374 
Sandy clay O10 0.01 0.48 2.120 · 10-2 0.97 1.257 

Clay O13 0.01 0.57 4.370 · 10-2 1.94 1.089 
Loam O15 0.01 0.41 3.700 · 10-2 0.71 1.298 
Peat O17 0.01 0.86 2.930 · 10-2 1.23 1.276 

 
One of the differences between the two SHM’s is that within 

Campbell the θr is assumed to be equal to 0.00 m3 m-3. However, as 
can be observed in Table 9-3, the θr values are close to 0.00 m3 m-3 
and do not vary a lot among the selected soil classes (0.00 – 0.01 m3 

m-3). For convenience, the Van Genuchten θr is, therefore, also set to 
0.00 m3 m-3. Moreover, the Campbell SHM utilizes the ψs and b as 
shape parameters, while for Van Genuchten the α and m need to be 
specified. Despite the differences between the Campbell and Van 
Genuchten shape parameters, Rawls et al. (1993) as well as Van 
Genuchten (1980) pointed to the their analytical similarity between 
the parameters and showed that,  

1
sψ

α
=  and ( )

1
1

b
n

=
−

 (9.9) 

These relationships follow directly from the similarity in the 
retention curves of the SHM’s. This, however, does not necessarily 
lead to a good agreement between the K- and D-curves because the 
Campbell SHM defines the parameters Ks and θs at ψs. Moreover, 
differences in the slope of the retention curve near the inflection point 
may affect the magnitude of the D(θ). For these reasons, two sets 
Campbell SHP’s are derived focused on agreement of:  

1) Retention curves, referred to as Campbell A;  
2) K- and D-curves, referred to as Campbell B.  
The Campbell A parameters are obtained through application of 

Eq. 9.9. Parameters for Campbell B are derived using a least squares 
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minimization algorithm to match the K-θ and D-θ relationships, 
whereby the parameters Ks, ψs and b are adjusted and θs is kept at 
its original value. The resulting Campbell A and B parameters are 
given in Tables 9-4 and 9-5, respectively, and the ψ-θ, K-θ and D-θ 
relationships are presented in Figure 9-2. As is expected, Figure 9-2 
demonstrates that through application of Campbell A a good 
agreement is obtained with Van Genuchten’s retention curve, while 
substantial differences are noted among the K-θ and D-θ 
relationships; and vice versa when the Campbell B parameterization 
is applied.  

 
Table 9-4 Campbell soil hydraulic parameters derived from the Van 
Genuchten parameters through application of Eq. 9.9 (Campbell A). 

Description Class θs Ks ψs b 
[m3 m-3] [m d-1] [m-1] [-] 

Coarse sand O05 0.32 2.500 · 10-1 0.168 0.94 
Sandy clay O10 0.48 2.120 · 10-2 0.935 3.57 

Clay O13 0.57 4.370 · 10-2 0.515 11.23 
Loam O15 0.41 3.700 · 10-2 1.408 3.36 
Peat O17 0.86 2.930 · 10-2 0.813 3.62 

 
Table 9-5 Campbell soil hydraulic parameters obtained by matching 
to the Van Genuchten relationships (Campbell B). 

Description Class θs Ks ψs b 
[m3 m-3] [m d-1] [m-1] [-] 

Coarse sand O05 0.32 1.290 · 10-1 0.43 0.60 
Sandy clay O10 0.48 1.577 · 10-3 1.08 3.77 

Clay O13 0.57 4.514 · 10-4 0.51 11.24 
Loam O15 0.41 2.531 · 10-3 2.00 3.17 
Peat O17 0.86 1.791 · 10-3 1.14 3.44 

 
A comparison of the exact parameter values shows the largest 

deviations among the Ks values, which is one order of magnitude 
smaller for Campbell B than for Campbell A. This can be argued for 
because the Ks by Campbell is defined at ψs, while the K(θ) at ψs by 
Van Genuchten is lower than Ks. Thus, to fit the Van Genuchten K- 
and D-curves requires a lower Campbell Ks. Further, differences are 
also observed among the shape parameters (ψs and b), which 
induces discrepancies between the retention curves. For smooth 
retention curves (typical for fine-textured soils) these differences are 
smaller than for curves with a well-defined ‘S’ shape (for example: 
coarse sand, loam and peat). 
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Figure 9-2 Soil hydraulic functions derived using the Van Genuchten 
and Campbell SHM for five soil classes of the Dutch PTF.  Campbell A 
is obtained through application of Eq. 9.9 and Campbell B is obtained 
by fitting the K-θ and D-θ curves. 
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9.4 Noah simulations with different vertical 
integration schemes for the soil water flow 

In this section, Noah simulated soil moisture profiles are 
presented using different schemes for vertical integration of the soil 
water flow, which include the soil layer discretizations presented in 
Table 9-1 and vertical integration schemes A, B and C. For these 
simulations, Noah has been run using atmospheric forcings measured 
at Cabauw over the period 1 June to 5 September 2003, which are 
described in Section 4.2. The ‘light clay’ soil hydraulic and 
‘cultivations’ vegetation parameter sets have been adopted from the 
standard table utilized for large scale Noah applications. Those 
parameterizations are given Tables 3-1 and 3-2. The initial soil 
moisture contents have been set to the θs over the complete profile, 
which is much wetter than expected given the dry conditions of the 
2003 summer. 

Figure 9-3 Soil moisture profiles simulated by Noah with 4, 12 and 20 
soil layers, and scheme A (red), B (blue) and C (green) for 1 July (+), 
1 August (o) and 25 August (�). 
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After 1 August, the soil moisture content is essentially unchanged 
below 1 m for method A, while soil moisture in the root zone 
decreases further towards residual moisture conditions. For methods 
B and C, however, the soil moisture below 1 m does dry out after 1 
August. On the other hand, the root zone is 0.044-0.022 and 0.033-
0.015 [m3 m-3] wetter for method B and C, respectively, depending 
on the number of layers. These systematic differences in the root 
zone soil moisture and deep soil moisture indicate that the diffusive 
soil water flow is underestimated by method A. This explains the 
hydraulic decoupling of the root zone and the deeper soil layer(s) 
observed for method A. 

Figure 9-4 Averages of the Noah simulated root zone soil moisture 
(left panel) and 2 m soil moisture (right panel) calculated over the 
simulation period and plotted against the number of soil layer. 
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capillary rise mechanism is underestimated by method A, the 2 m soil 
moisture remains unchanged even under dry conditions. As a result, 
the scheme A simulated 2 m soil moisture is 0.021 – 0.006 m3 m-3 
larger than for scheme B and 0.018 – 0.006 m3 m-3 larger than for 
scheme C.  

The differences in the simulated soil moisture between the 
schemes are largest for the 4 layer model configuration and decrease 
as the number of soil layers is increased. A finer discretization of the 
soil profile results in smaller soil moisture gradients between the 
layers. Therefore, the differences in the calculation of the coefficients 
K and D between the schemes are reduced as the number of soil 
layers is increased. However, consistently for all three schemes, little 
change was observed in the averaged root zone soil moisture and 2 
m soil moisture for an increase in the number of soil layer from 12 to 
20 layers. The 12 layer model configuration could, therefore, be 
considered a good compromise between the numerical efficiency and 
the physical representation of the soil water flow. 

9.5 Noah simulations using the Campbell and Van 
Genuchten SHM’s for five soil classes 

For evaluating the influence of the differences in the SHF’s 
presented in Figure 9-2, the five selected soil classes of the Staring 
series have been used for Noah simulations. Again, the initial soil 
moisture conditions are artificially set to saturation and atmospheric 
measurements, collected from 1 January through 5 September 2003 
at Cabauw, are used as forcings. These simulations are performed 
using Method B for vertically integrating the soil water flow and the 
soil column is divided into 12-layers. The soil moisture of 1st (root 
zone) and 2nd meter (2 m) resulting from these simulations are 
calculated and plotted in Figure 9-5 and Figure 9-6, respectively. Also 
the Van Genuchten computed θc and θw are provided in the root zone 
soil moisture plots to indicate the conditions under which evaporation 
is restricted by soil moisture stress. 

Differences in the simulated soil moisture among the three SHF’s 
are negligible for the O05 soil class. For this sandy soil, a rapid decay 
of both the root zone and 2 m soil moisture is noted, while the dry-
down for the other soils is less severe.  This specific hydraulic 
behavior of the O05 class is a result of the large Ks value, which 
generates a faster transport of water through the soil column and, 
thus, enhances the drying process. The Noah O05 simulations reach, 
however, the θc in about the same period as for the other soils 
because this critical value is much lower with respect to the θs. Also, 
the range, over which soil moisture reduces the root uptake, is 
smaller than for the other soils. Due to this limited soil moisture 
feedback, the root zone soil moisture for the sandy soil decreases 
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rapidly to θw and remains near or at θw in the dry period, while the 
root uptake reduction simulated for the other soils delays the drying. 

Figure 9-5 The Noah simulated root zone soil moisture using three 
types of SHF’s for five soil classes plotted against time. 
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Figure 9-6 The Noah simulated 2 m soil moisture using three types of 
SHF’s for five soil classes plotted against time. 
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Systematic differences in the simulated soil moisture are, 
however, observed among the three SHF’s of the fine textured and 
peat soil(s). Using the Campbell A SHF’s, Noah simulates a rapid 
decay of the root zone soil moisture for these soils because the K(θ) 
is larger, which results in more drainage to the deep layers. After the 
θc has been reached, the root uptake reduction constrains the drying 
of the root zone. Further, the dry down is also delayed by the upward 
transport of water from the deep layers because of the larger D(θ). 
As a result, the Campbell A root zone soil moisture converges 
towards the Van Genuchten simulations near the end of the 
simulation period, while the Campbell A 2 m soil moisture becomes 
significantly lower.  

The opposite behavior is found when Noah is run with the 
Campbell B SHF’s. At the beginning of the simulation, the Campbell B 
root zone soil moisture is comparable to Van Genuchten due to the 
similarity between the K-θ and D-θ relationships. During the summer, 
however, the root zone soil moisture reaches θw earlier. The Campbell 
B SHF’s are derived by matching the K-θ and D-θ relationships, for 
which most notably a Ks decrease is needed. In Noah, the Ks affects 
the infiltration capacity positively. The lower Ks reduces, thus, the 
infiltration capacity and less rain can enter the soil column, which 
enhances the drying process. 

Figure 9-7 presents for each run the drainage, surface runoff and 
total evaporation accumulated over the simulation period. 
Characteristic in the plots are the large amount of drainage for 
Campbell A and the large amount of surface runoff for Campbell B, 
which both support the development of the root zone and 2 m soil 
moisture as discussed above. The high K(θ) of Campbell A in the mid 
and dry soil moisture range produces the large amount of drainage, 
and the small infiltration capacity for Campbell B induces the large 
production of surface runoff. Conversely, the simulated drainage and 
surface runoff are lowest for Campbell B and Campbell A, 
respectively.  

Because of the large amount of surface runoff simulated using 
Campbell B, the root zone soil moisture is dryer and 6.8 – 13.6% less 
evaporation is generated for the fine textured mineral soils as 
compared to Van Genuchten. The differences in evaporation between 
Van Genuchten and Campbell B are smaller for the peat soil (O17) 
because the conditions are less restrictive. Surprisingly, the Campbell 
B evaporation is larger than Van Genuchten for the sandy soil (O05). 
This is explained by the smaller amount of surface runoff induced by 
the larger Ks for this soil class and soil moisture deficit; more soil 
water is, therefore, available for evaporation. The large downward 
water flux simulated with the Campbell A SHF’s is compensated by 
the upward transport of soil water induced by the larger D(θ). As a 
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result, the Campbell A evaporation is less 3.4% than Van Genuchten. 
The Campbell A evaporation is even larger for the clay soil (O13) 
because differences in the K-θ relationships are smaller than for the 
other soil classes, while the D-θ differences are similar. Therefore, 
the simulated drainage is lower than for the other soils in the wet 
episodes, while upward soil water flux is maintained under dry 
conditions.  

Figure 9-7 Accumulated drainage, surface runoff and total 
evaporation simulated using three types of SHF’s for five soil classes. 
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9.6 Conclusions and discussion 
In this chapter, the scheme for vertically integrating the soil water 

flow in Noah and the model for calculating the soil hydraulic functions 
(SHF) are discussed.  

Three methods for vertically integrating the soil water flow are 
compared, which are: 

• A scheme based on the calculation of the K and D using 
the soil moisture (θ) in the upper layer (currently used by 
Noah); referred to as method A.  

• A scheme that utilizes the simulated soil moisture of 
the upper layer for D calculation when dθ/dz is downwards 
and simulated soil moisture of lower layer when dθ/dz is 
upwards; referred to as method B. 

• A scheme based on the calculation of weighted 
averages for K and D of two consecutive soil layers; referred 
to as method C.  

The three schemes have been implemented in Noah and have 
been applied in combination with ten vertical discretizations with 3 to 
20 soil layers. Atmospheric boundary layer variables measured 
between 1 January and 5 September (2003) at the Cabauw 
meteorological site (The Netherlands) have been used to force Noah. 
During this period the 2003 European heat wave occured.  

Those atmospheric forcings have been used to perform synthetic 
Noah simulations using the initial soil moisture set to saturation and 
parameterizations adopted from tables used for large-scale 
applications. These simulations demonstrate that the method 
currently used by Noah for vertically integrating the soil water flow 
systematically underestimates the upward transport of soil water due 
to capillary rise. Hence, the simulated 2 m soil moisture remains 
stable even under dry conditions and a high evaporative demand. 
This is an explanation for the slow spin up of Noah found in previous 
studies (e.g. Cosgrove et al. 2003 and Rodell et al. 2005). The 
capillary rise mechanism is accommodated within Noah via the two 
alternative schemes (B and C). Further, it is found that the 
differences between the schemes decrease for an increasing number 
of layers and a 12 layer configuration forms a good comprise between 
numerical efficiency and the physical representation of the soil water 
flow.  

Also, the SHF controls the simulation of soil water flow. In Noah, 
as in most other LSM’s, the SHM by Campbell (1974) is employed to 
describe these functions, while it is commonly understood that the 
Van Genuchten SHM represents the measured SHF’s better. Surface 
water budgets simulated by Noah using these two SHM’s are 
compared.  To cope with the parameter differences, the Van 
Genuchten SHP’s provided by the Dutch pedotransfer function are 
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utilized to derive the Campbell parameterizations. For this derivation, 
two different approaches have been adopted:  
• The theoretical similarity between the retention curves is used to 

determine the shape parameters (ψs and b), while the other 
parameters (θs and Ks) are kept constant; referred to as Campbell 
A.  

• The Campbell parameters, Ks, ψs and b are adjusted to fit the Van 
Genuchten K-θ and D-θ relationships; referred to as Campbell B.  
Campbell A and Campbell B parameterizations have been derived 

for five soil classes of the Staring Series. With respect to Van 
Genuchten, the most notable difference is the larger Campbell A K(θ) 
and D(θ) in the mid and dry soil moisture range, and the lower 
Campbell B K(θ) and D(θ) near saturation due to a smaller Ks. 
Further, the deviations between the retention curves are largest for 
Campbell B. 

Using the Van Genuchten, Campbell A and Campbell B SHF’s, 
atmospheric forcings measured at the Cabauw meteorological station 
have been used to run Noah from 1 January through 5 September 
2003. Again, for these simulations the initial soil moisture (θi) has 
been artificially set to saturation. Moreover, method B is used for 
vertically integrating the soil water flow and the soil column is divided 
into 12 layers.  

Characteristic for these Campbell A simulations is a faster 
transport of water induced by the larger K(θ) and D(θ) values. This 
results in the production of more drainage under wet conditions and 
more evaporation under dry conditions due to the larger amount of 
upward soil moisture flux. Using Campbell B, Noah generates more 
surface runoff because its smaller Ks negatively affects the infiltration 
capacity. Less rain can, therefore, infiltrate which leads to lower root 
zone soil moisture and less evaporation under dry conditions. 

The results from this Chapter demonstrates that significantly 
different surface water and energy budgets are simulated by Noah 
when adopting different schemes for vertically integrating soil water 
flow and using either the Van Genuchten or Campbell SHM. Because 
at the Cabauw site the groundwater table is maintained at a fixed 
level throughout seasons, a meaningfull comparison against in-situ 
measurements is not possible to evaluate these results. As Van 
Genuchten is known to describe measured SHF best, a more physical 
representation of the soil water flow simulation within Noah can be 
obtained when the Van Genuchten SHM is used. Incorporation of Van 
Genuchten and scheme B or C for vertically integrating soil water 
flow into Noah would lead to smaller soil water losses (e.g. 
evaporation, drainage and surface runoff) and would reduce the 
drought stress simulated under extreme dry situations when also the 
deep soil layers are exhausted.  
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10 Adaptation of the Noah land model to 
Tibetan conditions 

 
This chapter is based on: 
 
Van der Velde, R., Su, Z., Ek, M., Rodell, M., Ma, Y., 2009, “Influence of 

thermodynamic soil and vegetation parameterizations on the 
simulation of soil temperature states and surface flux by the Noah LSm 
over a Tibetan Plateau site”, Hydrology and Earth System Sciences, 
13, pp. 759-777. 

 

10.1  Introduction 
Land models, such as Noah, describe the land-atmosphere 

interactions within operational ACM’s. Because ACM are 
computationally demanding, numerical efficiency of the LSM is 
required. A simplified implementation of the physical processes is, 
therefore, inevitable. For example, the impact of a physically based 
formulation of roughness lengths for momentum and heat transport 
on the calculation of the surface fluxes has been stressed (i.e. Chen 
et al. 1997, Zeng and Dickinson 1998, Su et al. 2001, Liu et al. 2007, 
Ma et al. 2008) and the influence of a more detailed description of 
the land surface hydrology has been discussed (see Chapter 9, 
Gutmann and Small 2007, Gulden et al. 2007). Moreover, the number 
of soil and vegetation parameterizations accommodated within global 
modeling systems is limited (e.g. Ek et al 2003).  

The impact of those (and other) uncertainties in the simulation of 
land processes on the output of an ACM was evaluated by Dickinson 
et al. (2006). They found significant differences between measured 
and simulated air temperatures and precipitation amounts for 
selected extreme environments, such as the Sahara desert, the semi-
arid Sahel, Amazonian rain forest and Tibetan Plateau. These findings 
are supported by the results presented in Hogue et al. (2005), which 
showed that thorough optimization of a comprehensive set of model 
parameters, can reduce differences between the measured and 
simulated heat fluxes for the semi-arid Walnut Gulch watershed 
(Arizona, USA) by as much as 20-40 W m-2. The investigation by 
Dickinson et al. demonstrates the existence of inconsistencies in the 
simulations of land surface processes at a global scale, while Hogue 
et al. (2005) show that adjusting parameterizations improves the 
model’s performance significantly. This suggests that even for 
extreme environment the implemented LSM physics is flexible enough 
to represent the land surface processes adequately given the 
appropriate parameterization. 
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Within the framework of the Model Parameter Estimation 
Experiment (MOPEX) the development of area specific land surface 
parameterization has been accommodated (Schaake et al. 2006). The 
focus of this initiative has been on the development of parameter 
estimation methodologies and the calibration of parameters that 
affect primarily the rainfall-runoff relationships (Duan et al. 2006).  
As a result, the influence of model parameters on simulating the 
surface energy balance has received little attention. One of the few 
investigations addressing the impact of parameter uncertainties on 
the energy balance simulations has been reported by Kahan et al. 
(2006). They showed for the Simplified Simple Biosphere (SSiB, Xue 
et al. 1991) model that adjustment in the Leaf Area Index (LAI), 
stomatal resistance and saturated hydraulic conductivity (Ks) are 
required to decrease systematic differences between simulated and 
measured sensible and latent heat fluxes for a Sahelian study area in 
Niger. Moreover, the importance of a proper description of the 
thermal diffusivity is emphasized for reducing biases in the simulated 
diurnal surface temperature evolution. In a MOPEX-related study, 
Yang et al. (2005) show for the Tibetan Plateau that also the vertical 
soil heterogeneity may have a significant impact on the partitioning of 
radiation.  

These previous investigations demonstrate that adjustments in 
soil and vegetation parameterizations can yield significant 
improvements in the simulation of the surface energy balance. They 
also emphasize the need to analyze parameter uncertainties of 
different LSM’s in more detail. In this context, Noah is employed to 
simulate the land surface processes at a Tibetan Plateau site. For 
these simulations, the Noah model is forced with the atmospheric 
measurements collected at Naqu station over a 7-day dry period 
during the Asian Monsoon from 3 September to 10 September 2005. 
The objective of this study is to identify the adjustments in soil and 
vegetation parameterizations needed to reconstruct the temperature 
states in the soil profile and the measured surface energy fluxes over 
this short period. This chapter consists of two parts; First, Noah 
results obtained by using standard parameterizations described in 
Chapter 3 are presented. Then, the soil and vegetation parameters 
adjustments required to optimize the model performance are 
discussed. 

10.2  Noah simulations using default parameter sets 
In this section, the Noah model runs performed with the input of 

standard parameterizations given in Tables 3-1 and 3-2 are 
presented.  Based on the available soil texture information, the 
‘loamy sand’ soil parameters are adopted. However, a single 
vegetation parameterization valid for the extreme Tibetan conditions 
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is difficult to define. Noah simulations have, therefore, been 
performed using three vegetation parameter sets considered to be 
equally representative for the Tibetan Plateau, which are the tundra, 
bare soil and glacial parameterizations. For these simulations, the 
model is forced and initialized by measurements collected at Naqu 
station. Temperatures measured in the soil profile and heat fluxes 
reconstructed using the Bowen Ratio method are availed to assess 
Noah’s performance. A description of these measurements and the 
processing of the heat fluxes are documented in Section 4.3.  

Figure 10-1 presents the plots with measured and simulated heat 
fluxes (H, λE and G0) obtained using the three vegetation parameter 
sets against time. Similarly, plots with the time series of the 
measured and simulated soil temperatures at the surface, soil depths 
of 5-cm and 25-cm are presented in Figure 10-2. In addition, the 
RMSD’s and the biases calculated between the measurements and 
simulations are presented in Tables 10-1 and 10-2 for the surface 
energy balance components and the soil temperature states, 
respectively.  

In general, the comparison indicates that the partitioning between 
the H and λE is not properly simulated. Noah overestimates the 
measured H resulting in biases of 41.25 – 52.69 W m-2 and 
underestimates the λE by 18.36- 39.53 W m-2 depending on the 
adopted vegetation parameterization. As a result of the biases 
obtained for H and λE, also the obtained RMSD‘s are somewhat large 
as compared to optimized modeling results presented in previous 
studies (e.g. Sridhar et al. 2002, Yang et al. 2005 and Gutmann and 
Small 2007).  

 
Table 10-1 RMSD calculated between the measured soil temperature 
states and surface fluxes, and the Noah simulations. 

Land cover
H  λE  G0  Tskin  T5cm T25cm 

[W m-2] [oC] 
Tundra 53.50 32.40 34.12 1.48 1.08 1.19 

Bare soil 57.85 42.54 33.34 1.84 1.80 1.77 
Glacial 47.41 33.20 34.23 1.45 1.28 1.33 

 
Table 10-2 Biases calculated between the measured soil 
temperatures and surface fluxes, and the Noah simulations. 

Land cover
H  λE  G0  Tskin  T5cm T25cm 

[W m-2] [oC] 
Tundra -48.91 18.36 3.80 1.13 0.59 0.69 

Bare soil -52.69 39.35 2.08 0.17 -0.24 0.28 
Glacial -41.25 20.91 2.81 0.56 0.10 0.45 
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Figure 10-1 Comparison of the measured heat fluxes and the Noah 
simulations obtained using three standard vegetation 
parameterizations.  
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Bare soil
Tundra
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Figure 10-2 Comparison of the measured soil temperature at surface 
level and soil depths of 5 cm and 25 cm against Noah simulations 
obtained through application of three standard vegetation 
parameterizations.  

 
It should be noted that the magnitude of the H overestimation is 

13.34 – 30.55 W m-2 larger than the underestimation of the λE. From 
an energy balance perspective, this difference should be 
compensated by other energy components, but only a small 

246 248 250 252 254 256

0

5

10

15

20

25

30

5-
cm

 S
oi

l t
em

pe
ra

tu
re

 [
o C

]

246 248 250 252 254 256

Day of the Year [#]

0

4

8

12

16

20

25
-c

m
 S

oi
l t

em
pe

ra
tu

re
 [

o C
]

246 248 250 252 254 256

0

10

20

30

40
Sk

in
 t

em
pe

ra
tu

re
 [

o C
]

Measured
Bare soil
Tundra
Glacial



Adaption of the Noah land model to Tibetan conditions 

 132 

systematic difference can be noted in the G0. The explanation for this 
discrepancy is found through the analysis of the measured and 
simulated temperatures of the soil profile. Although the measured 
dynamic temperature range is not entirely captured by the 
simulations, the modeled surface temperature (Tskin) and 5-cm soil 
temperature compare reasonably well with the measurements and 
results in RMSD’s of 1.45-1.84 and 1.08-1.80 oC, respectively. On the 
other hand, the 25-cm soil temperature (T25cm)  simulations strongly 
underestimate the measured diurnal temperature variation, which 
indicates that the heat required for the simulation of temperature 
variations deeper in the soil profile is not transferred into soil column. 
Since a relatively small amount of energy is used for heating the 
deeper soil profile, more energy is available for heating the 
atmosphere. Hence, the Noah overestimates the H. 

Comparable results on the bias in partitioning the H and λE have 
previously been reported by Kahan et al. (2006). They have reported 
on over- and underestimation of H and λE measured using SSiB at a 
Sahelian study site in Niger by as much as 31.2 and 41.8 W m-2, 
respectively. By reducing the model’s stomatal resistance (among 
other parameters) by more than one order of magnitude, the λE is 
increased and, because of the energy conservation principle, a 
reduction in H is enforced. The differences between the modeling 
results obtained with the three vegetation parameterizations should 
be viewed in this context. The smallest H overestimation is observed 
for the glacial vegetation parameterization. This parameterization 
includes a low value for minimum stomatal resistance (Rc,min) and the 
lowest values for the roughness length for momentum transport (z0), 
which reduces the mechanically generated atmospheric turbulent 
fluxes. Therefore, Noah modeling results obtained through application 
of the glacial vegetation parameterization are considered to represent 
the Tibetan measurements best. 

Also, the inconsistency of LSM’s in the simulation of the soil heat 
transfer has been previously recognized. Yang et al. (2005) 
extensively discussed the impact of the vertical heterogeneity in the 
soil profile for the simulation of the H and λE, and concluded that 
accounting for the vertical soil heterogeneity is indispensable for a 
proper characterization of the soil heat transfer. In the default 
parameterization, vertical heterogeneous soils are not accommodated 
in Noah, which could be the explanation for the inconsistencies 
between the simulated and measured temperature at a soil depth 25 
cm. This is supported by the investigation of Yang et al. who 
concluded that over the Tibetan prairie grasslands the roots 
significantly alter the soil thermal properties (STP) of the top soil. 
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10.3  Optimized Noah simulations 
The analysis of the Noah results obtained using standard 

parameterizations has shown that the transfer of heat through the 
soil column and the partitioning between H and λE are not properly 
simulated. In this section, the simulation of these two land surface 
processes is optimized by adjusting soil and vegetation 
parameterizations. These adjustments consist of evaluating different 
numerical discretizations of the soil layers and calibration of soil and 
vegetation parameters.  

Calibration of the soil and vegetation parameters is performed 
using the Parameter Estimation (PEST, Doherty 2003) tool, which is 
based on minimizing the sum of squared differences (SSD) between 
measurements and simulations using the Gauss-Levenberg Marquardt 
algorithm. 

PEST allows users to assign weights to specific observations and 
different numerical schemes for the minimization of the SSD. For a 
complete mathematical description of PEST, readers are referred to 
Gallagher and Doherty (2007) and Doherty (2003).  Here, PEST is 
applied using its default configuration. To assure convergence, the 
optimization process has been performed for a wide range of initial 
parameter values and during each optimization run only a single 
parameter is calibrated. A SSD based on the measured and simulated 
G0 (SSDG0) is adopted for calibration of the soil parameters and a 
SSD based on the measured and simulated λE (SSDλE) is utilized to 
calibrate the vegetation parameters, independently. In this section, 
first, the influence of the soil parameterizations on the simulation of 
temperature states and surface energy balance is discussed and, 
then, the impact of the vegetation parameters is addressed. 
 
Table 10-3  Calibrated qtz parameters using seven soil layer 
discretizations within the Noah model.  
Number of soil layers Top layer thickness Quartz content 

[#] [cm] [-] 
4 layers 10.0 0.82 

5 layers 

0.1 1.50 
0.5 1.58 
1.0 1.63 
2.0 1.66 
3.0 1.67 
4.0 1.68 

 
Soil heat transfer  
Because of the large number of roots and the higher organic 

matter content, the thermal properties of the topsoil are expected to 
be different from the subsoil. Noah is, therefore, adapted to 
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accommodate different soil thermal layers (STL’s). In terms of STL’s, 
a 0.10 m topsoil layer and 1.90 m subsoil layer has been selected for 
this investigation. For the subsoil the default parameterization for the 
thermal conductivity (κh) and heat capacitiy (C) have been assigned, 
while for the top soil a Csoil value of 1.0·106 J m-3 K-1 is taken and the 
qtz parameter in the κh parameterization is optimized by minimizing 
the ΦG0. Within this calibration procedure, the upper and lower limits 
of the quartz content are set to 0.01 and 2.0 beyond values that are 
physically possible in order to maintain maximum flexibility in the 
modeling system. In addition, different discretizations of the soil 
profile are evaluated, for which the default 4-soil layer and six 
alternate 5-soil layer models are used. Within the 5-layer model 
setups, thicknesses for the top soil layers of 0.1, 0.5, 1.0, 2.0, 3.0 
and 4.0 cm have been selected, while maintaining the thickness of 
the top two layers 0.10 m in total. 

The qtz parameter is calibrated for all seven soil profile 
discretizations and the optimized values are presented in Table 10-3. 
The glacial vegetation parameterization has been used for these 
simulations. The modeled and measured surface fluxes are presented 
in Figure 10-3. Similar plots are presented in Figure 10-4 for the 
temperatures at the surface and soil depths of 5 and 25 cm. The 
RMSD’s and biases between modeling results and measurements of 
the heat fluxes and soil temperatures are given in Tables 10-4 and 
10-5, respectively. It should be noted that the Noah simulations using 
the 5-layer model setup with thicknesses of the top soil of 2.0, 3.0 
and 4.0 cm are not shown in Figures 10-3 and 10-4.  

The results demonstrate that differentiation between the STP of 
the top- and subsoil alone improves the simulation of the soil 
temperatures only slightly and even increases the differences 
between the simulated and measured surface fluxes. The simulation 
of the soil heat transfer only improves when a thin soil layer is added 
to soil model discretization. For all six thicknesses of the top layer, 
the largest improvements are noted in the simulation of T25cm. The 
RMSD for the T25cm (RMSDT25cm) decreases from 1.33 oC obtained with 
the glacial vegetation parameterization and the default discretization 
to values varying between 0.71 and 0.66 oC depending on the 
thickness of the top soil layer, which is a reduction of 46.6-50.3 %. 
Also, the RMSD’s for simulated Tskin and T5cm obtained with the 5-
layer model setups decrease as compared to the model results 
obtained with the default 4-layer configuration. The Tskin RMSD 
(RMSDTskin) decreases from 1.45 oC to values of 1.15-1.35 oC and for 
the T5cm RMSD (RMSDT5cm) a decrease of 1.28 oC to 1.02-1.11 oC is 
observed. Both the RMSDTskin as well as RMSDT5cm depend on the 
thickness of the top layer; the lowest RMSDTskin and RMSDT5cm for a 
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0.1 cm top layer, while the lowest RMSDT25cm is obtained for a 1.0 cm 
top layer.  

Figure 10-3 Comparison of the heat fluxes measured and simulated 
using Noah with two soil thermal layers and different numerical 
discretizations of the soil profile. For reference also modeling results 
obtained with the default parameterizations are shown.  
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Figure 10-4 Same as Figure 10-3, except that the measured and 
simulated soil temperatures are shown for the surface level and soil 
depths of 5 and 25 cm. 
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the λE. Computations of H and G0 are both based on a temperature 
gradient either between the surface and the air temperature (for the 
H) or between the surface and the mid-point of the first soil layer (for 
the G0). For the G0, the lowest RMSD (RMSDG0) is obtained using the 
5-layer model with a 0.1 mm top layer (33.17 W m-2) because using 
the configuration diurnal temperature variations at the surface and at 
a 5-cm soil depth are simulated best. However, the change in the 
simulated surface temperature modifies also the temperature 
gradient between the skin and air. As a result, an increase of RMSD 
for H (RMSDH) is observed as the RMSDG0 decreases, and vice versa. 
The lowest RMSDH is obtained for the 5-layer model configuration 
using 4.0-cm top layer, which is 35.87 W m-2. The decrease in RMSDH 
observed for thicker top layer in 5-layer model configuration is 
coupled with a decrease in the obtained bias, which range from 40.42 
to 22.90 W m-2 for top soil layer thicknesses of 0.1 – 4.0 cm. This 
indicates an improvement in the simulation of the heat flux 
partitioning, while even the lowest bias obtained for the H as well as 
λE remain quite significant, 22.90 and 26.04 W m-2, respectively.  

 
Table 10-4 RMSD’s calculated between the measured  and simulated 
soil temperature and surface fluxes. The modelling results are 
obtained with Noah configured to accommodate different STP for the 
top- and subsoil and different discretizations of the soil profile. 
layers Top soil 

thickness 
H λE G0 Tskin T5cm T25cm 

[#] [cm] [W m-2] [oC] 
4 layers 10.0 52.72 33.17 41.28 1.40 1.49 1.32 

5 layers 

0.1 46.92 37.04 33.17 1.15 1.02 0.71 
0.5 44.34 36.21 34.73 1.25 1.05 0.68 
1.0 43.30 36.13 36.83 1.32 1.07 0.66 
2.0 43.24 36.06 39.34 1.36 1.09 0.66 
3.0 43.51 35.97 40.47 1.35 1.11 0.67 
4.0 35.87 35.89 40.68 1.35 1.03 0.67 

 
Table 10-5 Same as Table 10-4, except the biases are presented. 
layers Top soil 

thickness 
H λE G0 Tskin T5cm T25cm 

[#] [cm] [W m-2] [oC] 
4 layers 10.0 -46.40 18.70 17.33 0.84 0.30 0.44 

5 layers 

0.1 -40.42 31.07 2.31 0.05 -0.21 0.67 
0.5 -37.69 29.12 3.92 0.06 -0.28 0.65 
1.0 -35.91 28.19 5.35 0.06 -0.30 0.63 
2.0 -34.86 27.08 5.64 0.08 -0.29 0.64 
3.0 -34.62 26.45 5.33 0.10 -0.28 0.64 
4.0 -22.90 26.04 5.30 0.11 -0.25 0.65 
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In general, from these modeling results it may be concluded that 
differentiation between top- and subsoil and including a thin top soil 
layer improve the soil heat transfer simulation. However, these 
adjustments in the soil parameterization do not improve the 
simulation of the surface fluxes. The G0 simulation using 0.1 cm top 
layer represents the measurements best, while difference between 
the measured and simulated H is smallest using a 4.0 cm top soil 
layer. The overestimation of the H with 0.1 cm top soil layer might 
suggest that the simulated solar radiation available for heating of the 
air and soil is too large; meaning that the simulated solar radiation 
consumed by the cooling of surface through evaporation and 
transpiration is too low. Further, it should be noted that the optimized 
values for the quartz content for the all 5-layer model configurations 
exceed its physical limits varying between 1.50 and 1.68. An 
explanation for these unrealistic values will be provided in the 
discussion. 

 
Vegetation parameterization 
Amelioration of inconsistencies in simulating the partitioning 

between H and λE can be obtained by adopting an aerodynamic 
approach through reconsideration of kB-1 parameterization (e.g. Yang 
et al. 2008). However, Kahan et al. (2006) demonstrated that the 
simulation of the heat flux partitioning can also be improved by 
calibrating the vegetation parameters and showed that most notably 
an adjustment in stomatal resistance is needed to increase model 
performance. Similarly, the Rc,min of the Noah vegetation 
parameterization is used, here, to improve the simulated heat flux 
partitioning. In addition, the optimum temperature for transpiration 
(Topt), currently fixed at a value of 24.85 oC, may need to be tuned to 
represent the Tibetan conditions.  

Ideally, the Rc,min and Topt would be obtained from long term data 
sets as has been done by Gilmanov et al. (2007). This reaches, 
however, beyond the scope of this study.  The parameters Rc,min and 
Topt are, therefore, calibrated by minimizing the cost function between 
the measured and simulated λE. For this minimization, the 5-layer 
Noah model configuration is used with a 0.5 cm top soil layer and a 
qtz value of 1.58. The calibration of the Rc,min and Topt yields values of 
49.88 s m-1 and 7.21 oC, respectively. Thus, the Rc,min is reduced by 
100.12 s m-1 and Topt by  17.61 oC in comparison to the default 
parameterization. For the Tibetan conditions, the decrease in the 
Rc,min and Topt within Noah results in an λE increase. Lowering the 
Rc,min reduces the resistance for transpiration and 7.21 oC is closer to 
the averaged air temperature at the study site, which is 6.27 oC for 
the selected period.  
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Both changes to the two plant physiological parameters can be 
argued for. Growing seasons on the plateau are short and, in this 
short period, vegetation should be productive in order to be able to 
survive the harsh Tibetan environment. Further, temperatures on the 
plateau are, generally, lower than at sea level; a lower temperature 
at which plants transpire optimally is, therefore, required. At the 
same time, the validity of the default Topt can be questioned for all 
environments that substantially differ from the humid climate for the 
original parameterization (Dickinson, 1984). A climate dependent 
parameterization could be considered for global Noah applications.  
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Figure 10-5 Scatter plots of surface fluxes (G0, H, λE) measured and 
simulated using Noah in its 1) default configuration; 2) default 
numerical discretizations of the soil profile and 2 STL’s; 3) 5-layer 
model setup, 2 STL’s and top layer of 0.5 cm; 4) same as 3) except 
the vegetation parameters are calibrated. 

 
The modeling results of Noah simulations with the optimized 

vegetation parameters are plotted against measurements, which are 
presented in Figures 10-5 and 10-6 for the heat fluxes and soil 
temperatures, respectively. For comparison purposes, a selection of 
the Noah simulations discussed previously is also presented in these 
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figures, which are: 1) the default 4-layer model with the glacial 
vegetation parameters; 2) the 4-layer model with two STL’s and 
glacial vegetation parameters; and 3) the 5-layer model with two 
STL’s, 0.5-cm top layer and glacial vegetation parameters. The basic 
statistics, such as R2, RMSD and bias, are presented in the plots. 

Comparison of the plots in Figure 10-5 and 10-6 shows that the 
adjustments in the parameterization of STP improves the simulation 
of the soil temperature states, but does not result in a reduction in 
the differences between the simulated and measured surface fluxes. 
By using the calibrated Rc,min and Topt, the simulated partitioning 
between H and λE represents the measured surface energy budget 
better. The RMSD’s obtained for the H and λE are reduced from 47.4 
and 33.2 W m-2 for the default simulations to 33.3 and 26.5 W m-2 for 
simulations obtained with calibrated parameters, respectively. Kahan 
et al. (2006) have reported similar results. They showed for an 
application of the SSiB LSM to a Sahelian study area that lowering the 
model constraints for the transpiration, not only increases simulated 
λE, but also reduces the overestimation in the H.  
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Figure 10-6 Same as Figure 10-5 except that the soil temperature 
(Tskin, T5cm and T25cm) are shown here. 
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10.4  Discussion 
The adjustments in the parameterization of the STP and 

calibration of the vegetation parameters, Rc,min and Topt, have 
ameliorated the simulation of the soil heat transfer and reduced 
uncertainties in the simulated H and λE to levels comparable to those 
reported in previous investigations (e.g., Sridhar et al. 2002, 
Gutmann and Small 2007 and Pauwels et al. 2008). Despite the 
optimized Noah simulations are able to represent the soil 
temperature and surface energy balance measurements better, still 
some inconsistencies in the modeling results can be observed when 
radiative forcings become large. For example, Noah systematically 
overestimates the measured H at values larger than approximately 
150 W m-2, which coincides with an underestimation of the G0 and 
Tskin when the measured values are larger than approximately 150 W 
m-2 and 20 oC, respectively. Apparently, under large radiative forcings 
Noah is not able to simulate Tskin increase measured on the Tibetan 
Plateau. Therefore, the simulated temperature gradients between the 
surface and atmosphere, and between surface and the mid-point of 
the first soil layer become too large and too small, respectively. As a 
result, an over- and underestimation of the measured H and G0 are 
observed. The explanation of this discrepancy in the simulated Tskin is 
twofold.  

 

Figure 10-7 Measurements of the air and surface temperature, and 
the surface temperature approximated using Eq. 3.21 plotted as a 
time series for the analyzed period of meteorological forcing 
collected at a Tibetan Plateau site. 

 
First, the surface exchange coefficient for heat (Ch) may not be 

properly parameterized for the Tibetan conditions. Noah uses the 
Reynolds number dependent method proposed by Zilintinkevich 
(1995) to determine the kB-1. However, Yang et al. (2008) showed 
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for bare soil surfaces that Reynolds number dependent kB-1 methods, 
in general, tend to underestimate the strong diurnal kB-1 variations 
observed over the Tibetan Plateau (e.g. Ma et al. 2005 and Yang et 
al. 2003). A kB-1 underestimation during daytime results in more 
efficient heat transfer between the soil surface and the atmosphere, 
which causes an H overestimation and explains also the discrepancy 
between the measured and simulated Tskin. Other kB-1 methods (e.g. 
Su et al. 2001 and Yang et al. 2002) that are able to capture this 
diurnal kB-1 variation would further improve Noah’s overall 
performance over the Tibetan Plateau. For evaluations of the 
available kB-1 methods readers are referred to Liu et al. (2007) and 
Yang et al. (2008).  

Second, the linearization of the surface energy balance, Eq. 3.21, 
utilized to compute the Tskin contributes to explaining the differences 
between the simulated and measured Tskin. This approximation is 
exact when Tair is equal to Tskin and loses its validity as the difference 
between Tair and Tskin increases. For our Tibetan study site, differences 
between the Tair and Tskin can be expected to be significantly larger 
than at sea level because the air pressure is much lower and fewer 
air molecules are available to transport energy from the surface 
towards the air. To demonstrate the impact of the applied 
approximation for our Tibetan site, the measured Tskin and Tair, the 
Tskin calculated by using Eq. 3.21 are plotted in Figure 10-7. This plot 
shows that the applied approximation holds rather well during 
nighttime. After sunrise, however, differences between measured Tair 

and Tskin increase resulting in a discrepancy between the measured 
and approximated Tskin of more than 10 oC at midday. Obviously, this 
leads to an underestimation of Tskin even when the parameterization 
of the soil-vegetation-atmosphere system is in agreement with the 
local conditions.  

Within the uncertainties embedded in the Ch calculation and in the 
linearization applied for the Tskin simulation lies also the explanation 
for the unrealistically high values of the calibrated qtz parameter. 
With the increase of the qtz parameter, the thermal heat conductance 
is raised to increase the transport of heat into soil and to compensate 
for the lower simulated temperature gradient between surface and 
the mid point of the first soil layer. When the qtz parameter is not 
used to compensate for the Tskin underestimation, biases arise in the 
simulation of the soil temperature profile as occurs in Noah 
applications in the default configuration. 

10.5  Conclusions 
In this chapter, adjustments in the soil and vegetation 

parameterizations required to be able to reproduce the soil 
temperatures and surface fluxes using the Noah LSM are investigated 
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for a 7-day period of in-situ measurements collected at the Tibetan 
Naqu station. Analysis of the simulations obtained through application 
of the default parameterization has shown that,  

1) Heat transfer through the soil column is not represented 
adequately; 

2) Partitioning between the sensible (H) and latent heat (λE) 
flux is biased.   

Amelioration of the parameterization of these land surface 
processes is achieved through adjustment of soil and vegetation 
parameterizations. By differentiating between the soil thermal 
properties of a top- and subsoil, and including a thin top soil layer, 
uncertainties in the simulation of the soil heat transfer are reduced 
and RMSD’s between the measured and simulated Tskin, T5cm and T25cm 
are obtained of 1.25 oC, 1.05 oC and 0.68 oC by using a 0.5 cm thick 
top soil layer. It is found that adding a thin top soil layer has stronger 
effect than differentiating between the soil thermal properties of a 
top- and subsoil. A decrease in the vegetation parameters, Rc,min and 
Topt, constraining the transpiration reduces the RMSD for the λE from 
33.2 W m-2 obtained using the default Noah configuration to 26.5 W 
m-2 using the optimized parameterization. In addition, the 
improvement in the λE simulation also influences the H simulation 
and decreases the RMSD from 47.41 to 33.3 W m-2, while the 
differences between the measured and simulated G0 do not change 
significantly.  

Although the adjustments in the parameterization of the STP and 
calibration of vegetation parameters improved Noah’s capability of 
representing the soil temperature states and the surface energy 
balance components measured on the Tibetan Plateau, under 
conditions of the high radiative forcings an underestimation is 
observed of measured Tskin. This underestimation of the Tskin results in 
an overestimation of the H and underestimation G0. The explanation 
for the discrepancy in the Tskin simulation is twofold. First, the surface 
exchange coefficient for heat may not be properly parameterized. 
Second, the approximation, adopted for linearization of the surface 
energy balance for the Tskin calculation, introduces some uncertainties 
when differences between the measured Tskin and Tair are large, which 
are typical midday conditions on the Tibetan Plateau. 
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11 How may high resolution soil moisture 
retrievals improve large-scale modeling? 

 
This chapter is based on: 
 
Van der Velde, R., Salama, Mhd. S., Van Helvoirt, M.D., Su, Z., “Source of 

difference between SAR based retrievals and low resolution MM5-Noah 
soil moisture simulations”, to be submitted to Journal of 
Hydrometeorology. 

11.1  Introduction 
The first part of this thesis dealt with the retrieval of soil moisture 

from active microwave measurements and Noah LSM simulations 
were evaluated in the second part. The results presented in Chapters 
5 to 8 show that soil moisture can be retrieved from both SAR and 
scatterometer measurements with a reasonable accuracy. The soil 
moisture retrieved from remote sensing observations provides, 
however, only information on an instantaneous basis, while for 
monitoring purposes the soil moisture products should be available at 
shorter and regular time intervals. Moreover, one is often not only 
interested in soil moisture monitoring alone, but also in the 
quantification of processes, such as evaporation and runoff. For these 
reasons, integrating the remote sensing observations into a LSM is 
considered as an elegant method for a quantitative use of remotely 
sensed soil moisture products. 

The research on integrating remote sensing measurements into 
LSM simulations has had over the past decade a strong focus on data 
assimilation; readers are referred to McLaughlin (2002) and Reichle 
(2008) for reviews. In data assimilation, the simulated state(s) are 
updated by a weighted average of the originally simulated and the 
measured state(s) when available. A fundamental assumption in 
applying such data assimilation methods is that both model and 
measurements uncertainties are unbiased. This assumption is, 
however, hardly ever valid for both simulations and measurements 
when they are based on retrievals from remote sensing observations 
(Ni-Meister et al. 2005).  

For example, Chapters 5 and 6 show how changes in surface 
roughness and vegetation affect the retrieval of soil moisture. 
Further, the results from Chapter 9 and Walker et al. (2001) indicate 
that differences in the model structure of soil water flow schemes 
may severely affect the simulated soil moisture. The Noah 
simulations for the Tibetan Plateau site (in Chapter 10) have shown 
that the parameterizations used for large-scale applications has only 
a limited validity locally. Other sources of uncertainty affecting the
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land surface modeling results are related to the reliability of the 
atmospheric forcings (Berg et al. 2003, Sheffield et al. 2006) and the 
selection of the initial and boundary conditions.  

Various authors (e.g. Reichle and Koster 2004, De Lannoy et al. 
2007) advocate, therefore, for a removal of this bias prior to data 
assimilation. This method can be effective in eliminating the bias 
between simulations and measurements. Such approach can, 
however, not change the fact that some physical processes are not 
adequately simulated by the LSM. Yang et al. (2007) addresses this 
issue with the so-called dual pass variational data assimilation 
method. Within the first pass, model parameters are estimated using 
months of satellite measurements and in the second pass states are 
updated daily. In this way, the long term effects of parametric 
uncertainties and short term atmospheric forcing errors can be 
reduced. Via the calibration of model parameters on a long term basis 
the effects of the uncertainties due to the model structure are also 
taken into account, while the deficiencies in the model structure yet 
remain.  

Initially, the setup of this research was to assimilate the soil 
moisture retrieved from the ASAR data over the Tibetan Plateau into 
the Noah LSM. The data record of atmospheric forcings and heat flux 
measurements are, however, only available for a limited number of 
days and a single station on Tibetan Plateau. The Noah LSM 
simulations would have to be performed with atmospheric forcings 
obtained from ACM simulations. However, atmospheric forcings 
simulated by ACMs are uncertain particularly over extreme 
environments, such as the Tibetan Plateau, and the validation of the 
heat fluxes would be limited to measurements collected at a single 
location.  

This chapter is, therefore, not based on the assimilation of soil 
moisture retrieved from ASAR measurements. Instead the SAR based 
retrievals presented in Chapter 8 are compared to 10 km resolution 
soil moisture simulations by the Noah LSM coupled to the fifth 
generation Pennsylvania State University - National Center for 
Atmospheric Research (PSU/NCAR) Mesoscale Model (MM5) regional 
climate model. The advantage of using the Noah LSM coupled to MM5 
is that the regional atmospheric circulation is included in these 
simulations, whereas the spatial and temporal scale of ACMs is 
typically too coarse to take this into account.  

The MM5 Noah simulations provide soil moisture at 10 km spatial 
resolution whereas the ASAR soil moisture is retrieved at a 100 m 
resolution. A comparison of the two yields, thus, deviations that are 
related to 1) the inherent bias due to differences in the climatology of 
the simulated and retrieved soil moisture, 2) uncertainties associated 
with the simulations as well as retrievals, and 3) the differences in 
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the spatial representation. An understanding of the contribution of 
these sources of difference is needed to fully appreciate the value of 
integrating satellite soil moisture with models operating at a lower 
spatial resolution. This chapter presents a method for the 
quantification of the above-mentioned sources of difference between 
the two soil moisture data sets. 

11.2  MM5 simulations 
The PSU/NCAR MM5 modelling system is a limited area non-

hydrostatic model for predicting the regional atmospheric circulation 
that uses a terrain-following vertical coordinate systems. The core of 
MM5 system is described in Dudhia (1993) and Grell et al. (1994). It 
has two-way nesting capabilities and allows users to select different 
physics options. Here, the MM5 simulations were performed using the 
simple ice explicit moisture scheme (Dudhia 1989), the Medium-
Range Forecast planetary boundary layer scheme (Hong and Pan 
1996), the Rapid Radiative Transfer Model radiation scheme (Mlawer 
et al. 1997) and the Grell cumulus scheme (Grell et al. 1994). The 
default version of the Noah LSM has been coupled to MM5 to 
parameterize the exchange of water and energy between the land 
surface and atmosphere (Chen and Dudhia 2001).  

For this study, the MM5 modelling domain has been centred on 
Naqu station (31oN and 91oE) and is based on 43 x 43 grid cells in the 
horizontal plane with 10-km resolution. Boundary conditions for this 
simulation have been obtained from the NCEP-NCAR reanalysis 
project. In this configuration MM5 has been run from September 
2003 till September 2007. The simulation starts, thus, 20 months 
prior to the first ASAR acquisitions, which can be considered as model 
spinup, and covers the entire ASAR WS data set. 

11.3  Separating the sources of difference 
In developing the method for separating the sources contributing 

to the differences between the simulated and retrieved soil moisture 
we start with defining,  

'
MM5 MM5 climbθ θ= +  (11.1) 

ASAR
1

1
i
ASARn

θ θ=
− ∑  (11.2) 

where, θMM5 and θASAR  are the MM5 Noah and ASAR soil moisture 
content [m3 m-3], bclim is the inherent bias between the climatology of 
the simulated and retrieved soil moisture [m3 m-3], n is the number 
of pixels [#], superscript i is ith ASAR pixel within the model grid. 
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Via a linearization based on Taylor series expansion, it can be 
shown that the total mean of squared differences (σt

2) can be 
approximated as the sum of individual contributions as follows,  

2 2 2 2
t b u sσ σ σ σ= + +  (11.3) 

where, σb
2 is the contribution related to the inherent bias due to 

difference in the climatology of the simulated and retrieved soil 
moisture, σu

2 follows from uncertainties embedded with both the 
simulations and the retrievals, and σs

2 is the discrepancy between the 
two products arising from their difference in spatial resolution.  

For unbiased differences between the simulated and retrieved soil 
moisture Eq. 11.3 reduces to, 

'
2 2 2

u st
σ σ σ= +  (11.4) 

When the uncertainty in the ASAR soil moisture product is 
assumed to be unbiased at the scale of the MM5 model grid, σt

2 can 
be defined as,  

( )22
MM5 ASAR

1

1
1

n
i

t
in

σ θ θ
=

= −
− ∑  (11.5) 

and when the bias, b, is removed the σt’
2 can be defined as,  

( )'

22 '
MM5 ASAR

1

1
1

n
i

t
in

σ θ θ
=

= −
− ∑  (11.6) 

Substitution of Eq. 11.4 into Eq. 11.3 yields, 

'
2 2 2
b t t

σ σ σ= −  (11.7) 

Then assuming retrieval uncertainty are normally distributed, the 
σs

2 can be determined by, 

( )22
ASAR

1

1
1

n
i

s ASAR
in

σ θ θ
=

= −
− ∑  (11.8) 

Substitution of Eq. 11.8 into Eq. 11.4 gives, 

'
2 2 2
u st

σ σ σ= −  (11.9) 

11.4  Bias reduction 
From the above section follows that for separating σb

2, σs
2 and σu

2 

the bias due to difference in the soil moisture climatology should be 
understood and corrected for. Such systematic deviations are 
inherent to the comparison of two independent data sources. 
Simulations are, for example, biased because its dynamics and 
absolute range are constrained by model parameterizations. Also, the 
temporal characteristics of the retrieved soil moisture are strongly 
determined by the retrieval method. Because both process and 
observational models are non-linear systems, a bias correction based 
on merely regression is often found too crude.   
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Figure 11-1 Illustration of the cdf matching technique applied for 
removing the bias between the MM5 Noah simulated and retrieved 
soil moisture. 
 

Methods for transforming the retrieved into the simulated soil 
moisture climatology focus on obtaining a match in the first and 
second statistical moments. Crow et al. (2005) propose, for example, 
to evaluate the standardized anomalies of the simulated and 
retrieved soil moisture for unbiased comparisons. This approach 
requires, however, a long record of simulations and retrievals to 
accurately determine the mean and standard deviation. Alternatively, 
Reichle and Koster (2004) present a bias removal technique based on 
matching the cumulative distribution functions (cdf’s) of the 
simulated and retrieved soil moisture. This approach is adopted here 
and is illustrated in Figure 11-1.  

 
Table 11-1 Root Mean squared difference computed between the 
MM5 Noah and ASAR soil moisture. 

 Original CDF matched 
 RMSD Bias RMSD Bias 
 m3 m-3 m3 m-3 m3 m-3 m3 m-3 

Daily 0.085 0.067 0.051 0.008 
Monthly 0.075 0.067 0.035 0.008 
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In our application, the cumulative distribution of the θMM5 and the 
θASAR is estimated for each MM5 grid cell seperately, whereby the θMM5 
is only considered for the cdf when also the θASAR is available. The 
obtained cdf’s of the θMM5 and the θASAR are, thus, based on a total of 
150 soil moisture values. As such, the estimated cdf’s provide a 
statistical link between the MM5 Noah soil moisture climatology and 
the retrievals, from which the θASAR can be easily rescaled to the θMM5 
and vice versa. Because in data assimilation studies retrievals are 
used to reduce uncertainties in the simulated states, the θMM5 is 
considered as the baseline and the θASAR is transformed.  

Figure 11-2 Time series of MM5-Noah simulated and retrieved soil 
moisture averaged over the entire study domain; a) presents the 
results on a daily basis and b) shows monthly averages. 

 
The result of this rescaling is presented in Figure 11-2. The upper 

panel shows on a daily basis the θMM5 and θASAR averaged over the 
entire study domain, while the lower panel presents its monthly 
averages. Table 11-1 gives the RMSD’s and biases computed between 
the θMM5 and the θASAR with and without the bias removal.  

(a)

(b)

1/1/05 1/1/06 1/1/07

0

0.1

0.2

0.3

0.4

So
il 

m
oi

st
ur

e 
[m

3  
m

-3
]

1/1/05 1/1/06 1/1/07

Date [mm/dd/yy]

0

0.1

0.2

0.3

0.4

So
il 

m
oi

st
ur

e 
[m

3  
m

-3
]

MM5-Noah
ASAR original
ASARCDF



Chapter 11 

 151

The figure shows that the temporal evolution of the θMM5 and the 
θASAR are similar. The minimum simulated and retrieved values occur 
in the winters and the peak soil moisture is observed during the 
monsoon season. As expected, however, there is clear bias between 
the θMM5 and the uncorrected θASAR. The simulated minimum soil 
moisture is around 0.11 m3 m-3, while the minimum of the retrievals 
is at 0.03 m3 m-3. After applying the cdf matching, this bias is 
reduced from 0.067 m3 m-3 to 0.008 m3 m-3. As a result, also a 
reduction in the RMSD is observed, from 0.085 m3 m-3 to 0.051 m3 m-

3 on a daily basis. These differences are similar to the error levels 
noted between in-situ and retrieved soil moisture presented in 
Chapter 8. 

Figure 11-3 MM5 Noah soil moisture plotted against the ASAR 
retrieved soil moisture a) on a daily basis and b) for monthly 
averages. 

 
Although the general patterns of the θMM5 and the θASAR are 

comparable, considerable differences can be noted at a shorted time 
scale. The deviations between the θMM5 and θASAR are largest on a 
daily basis (see Figure 11-2a). However, discrepancies between two 
data sets are also present on a monthly basis. At the beginning of the 
2005 monsoon, for example, the θASAR is on average about 0.08 m3 

m-3 wetter than the θMM5. Conversely, the 2006 summer and during 
the 2007 spring the θASAR is drier than the simulated soil moisture. 

In order to quantify the temporal correlations on a daily and 
monthly time scale, Figure 11-3 presents scatter plots between the 
θMM5 and the bias corrected θASAR. Statistics related to the linear 
regression fitted through the data points are given in Table 11-2. In 
general, the data points in both plots follow the 1:1 line. However, 
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the scatter between the θMM5 and the θASAR is considerably larger on a 
daily basis. This mismatch between the simulated and retrieved soil 
moisture can be argued for. The simulated soil moisture depends 
strongly upon rainfall input and the exact timing of precipitation 
events is often wrong in general circulation models (Reichle et al. 
2004). Moreover, soil moisture retrievals are also subject to 
uncertainties. Within the monthly means, these stochastic sources of 
uncertainty are averaged out resulting in a R2 increase from 0.413 to 
0.683. As Reichle and Koster (2005) indicate that even with an 
anomaly correlation coefficient of 0.32 assimilating soil moisture 
retrievals leads to improvements, the θASAR on a daily as well as a 
monthly basis can be considered as meaningful. 

 
Table 11-2 Statistics  of linear regressions fitted through the data 
points in Figure 11-3. 

 A B R2 
Daily 0.666 0.057 0.413  

Monthly 0.877 0.015 0.683  

11.5  Results and discussion 
The previous analysis shows that after application of the cdf 

matching technique, the bias due to differences in the soil moisture 
climatology has been largely reduced. Figure 11-4 presents for each 
month a histogram of the remaining differences between the θMM5 and 
the bias corrected θASAR at the MM5 spatial resolution. The histograms 
illustrate that the differences between the θMM5 and the θASAR are fairly 
small during the winter months, while they increase towards the peak 
of the monsoon. In winters, the temporal and spatial soil moisture 
variability in the simulated and retrieved data sets are small. 
Therefore, mismatches between the two soil moisture products 
following from the model and retrieval uncertainties as well as 
differences in the spatial resolution are limited.  

Although the mean values of the differences between the θMM5 and 

the θASAR are closely centered on 0.0 m3 m-3 during the monsoon, its 
range covers differences from +0.15 to -0.15 m3 m-3. Given these 
large differences between the model and retrievals, it is valid to 
question if assimilation of the retrieved soil moisture into a large 
scale model would lead to an improvement. It should, however, be 
noted that soil moisture is much more variable in both space and 
time due to the intensive rain events occuring during the monsoon. 
Larger uncertainties in the simulated and retrieved soil moisture can, 
thus, be expected. On the other hand, the deviations between the 
θMM5 and the θASAR may also arise from the differences in the spatial 
resolution. Storms during the monsoon are strong convective 
systems that can produce large amounts of rain locally, while nearby 
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areas remain dry. Separation of the different sources contributing to 
the deviations between the θMM5 and the θASAR could indicate the value 
of the high resolution ASAR soil moisture retrievals for improving 
modeling of land surface processes at a large scale.  

Figure 11-4 Histograms of differences between the MM5 Noah and 
ASAR soil moisture averaged for MM5 grid cell for each month. 
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Here, the differentiation between σb
2, σs

2 and σu
2 is based on the 

application of Eqs. 11.7, 11.8 and 11.9, respectively. As the 
magnitude of the individual contributions varies with time and space, 
the following normalization is applied,  

2
2

_ 2
x

x n
t

σσ
σ

=  (11.10) 

where, subscript x represents either the subscripts b, s or u and 
the σxn

2 is the relative contribution of x the total difference observed 
between the θMM5 and the  θASAR.  

Figure 11-5 presents the relative contribution of the three sources 
in the form of a cdf for each month. These cdf’s are based on the 
σbn

2, σsn
2 and σun

2 computed for each MM5 grid cell. Monthly averages 
of the relative contributions are given in Figure 11-6. Both Figures 
11-5 and 11-6 illustrate the importance of the spatial soil moisture 
variations in explaining the deviations between the θMM5 and the θASAR. 
The σsn

2 contribution is larger than the other factors during each 
months.  

Even though σsn
2 is larger than σbn

2, it is observed that during 
winters the relative contribution of the bias is comparable to the 
spatial variability, on average 40% and 53%, respectively. With an 
averaged contribution of about 7 %, the differences induced by model 
and retrieval uncertainties have the smallest impact during the winter 
season. This is somewhat expected based on the results shown in 
Figure 11-4 because deviations between the θMM5 and the bias 
corrected θASAR are fairly small during the winter months. As the 
inherent bias due to different soil moisture climatologies is less 
subject to temporal variations, its relative contribution to the 
observed differences is larger during the winter months. 

Towards the peak of the monsoon, a descreasing bias contribution 
is observed, and the contributions of the uncertainties and spatial 
variability increase. Figure 11-4 shows for those months also an 
increase in the difference between the θMM5 and the biased corrected 

θASAR. As such, the decrease of the relative bias contribution can be 
explained. For the months affected by the monsoon (May-October), 
the relative contributions of the bias and uncertainty are comparable, 
on average 16% and 13 %, respectively. However, the majority of 
the deviations (71%) can be attributed to the spatial soil moisture 
variability as is retrieved from the ASAR measurements. 
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Figure 11-5 Cumulative distribution functions derived from the 
σbn

2, σsn
2 and σun

2 computed for each MM5 grid cell for each 
month. 

 
This result has important implications for our perspective on how 

to improve the simulation of large-scale land surface processes using 
high resolution soil moisture products. So far data 
assimilation/integration studies are strongly biased towards 
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accommodating the global products from coarse resolution microwave 
radiometers and scatterometers. The use of high resolution soil 
moisture products for such purposes has been given less attention 
because of alleged problems with its accuracies. The agreement 
between the bias corrected θASAR and the θMM5 demonstrates, however, 
that skill of the ASAR soil moisture product is no less than the ones of 
available global products (e.g. Reichle et al. 2004). Moreover, the 
decomposition of the θMM5 and the θASAR differences into different 
components shows that the ASAR soil moisture variations is the 
largest contributor to those deviations. As such, perhaps the true 
value of integrating high resolution soil moisture products with large-
scale modeling systems lies in improving the spatial representation 
rather than data assimilation.  

Figure 11-6 Monthly averages of the σbn
2, σsn

2 and σun
2. 

11.6  Summary and conclusions 
This chapter deals with the comparison of the soil moisture 

simulations and retrievals. The soil moisture is simulated at 10 km 
horizontal resolution by Noah LSM coupled to MM5 regional climate 
model. The 100 m resolution SAR based soil moisture products 
presented in Chapter 8 are adopted, here, as the retrievals. Given the 
difference in the spatial resolution, the comparison is considered to 
yield deviations related to 1) a bias caused by the difference in their 
soil moisture climatologies, 2) uncertainties embedded within 
simulations as well as retrievals, and 3) differences in the spatial 
representation. A method for quantifying these three sources of 
difference has been presented. 

Matching the cumulative distribution functions (cdf’s) of the θASAR 
and the θMM5 is used for reducing the bias caused by their different 
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soil moisture climatologies, which results in a bias corrected θASAR. 
The comparison of the θMM5 and the bias corrected θASAR shows that 
bias between the two products has been largely reduced and yield 
RMSD of 0.051 m3 m-3 on a daily basis. This error level is comparable 
to the differences between the retrievals and in-situ measurements 
presented in Chapter 8. Moreover, the resulting R2’s are similar to the 
values obtained between models and readily available global soil 
moisture products.   

The standard deviation of the θASAR within a MM5 Noah grid cell is 
assumed to represent deviations between the θMM5 and θASAR caused 
by their different spatial resolutions. Then, from the standard 
deviations between the θMM5 and the θASAR, and between the θMM5 and 
the bias corrected θASAR, the three sources of difference are 
determined. Analysis of the relative contributions on a monthly basis 
shows that the largest part of the deviations between the θMM5 and 
the θASAR is explained by the spatial soil moisture variability retrieved 
from ASAR observations. During winter months, the spatial variability 
contributes for about 50% to the differences between the two 
products, while this contribution increases to more than 70% in the 
monsoon affected period. 

The observed agreement between the θASAR and the θMM5 
demonstrates that the potential of the high resolution soil moisture 
products for improving the simulation of large-scale land processes is 
no less than that of soil moisture products from coarse resolution 
microwave sensors. One should, however, also consider that the 
differences between the θASAR and the θMM5 are largely caused by the 
spatial soil moisture variability. Integrating high resolution soil 
moisture products with large-scale models should, therefore, not only 
focus on data assimilation, but also on improving the spatial 
representation of soil moisture at the subgrid level.  

However, the development of an operational high resolution 
global soil moisture product is currently hindered by the temporal 
availability of SAR observations. This issue will be resolved with the 
launch (expected in 2011) of the Sentinel-1 mission, which is a part 
of ESA’s contribution to the GMES program.  
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12 Summary and Conclusions 
 

Soil moisture has an important effect on the partitioning of solar 
radiation and influences, thus, the development of weather systems. 
It is, therefore, expected that an improved representation of the soil 
moisture dynamics in atmospheric circulation models (ACM’s) will 
enhance their predictive skills. There are different methods to achieve 
this. For example, the reliability of simulated soil moisture can be 
improved by using more realistic model structures. Increasingly 
popular with the availability of more remote sensing observations is, 
however, to reduce the uncertainties of simulations through 
integration with measurements (or satellite retrievals).  

This thesis contributes to both aspects. Chapters 5 to 8 deal 
with the retrieval of soil moisture from active microwaves, whereas 
Chapter 9 and 10 discuss land surface model simulations performed 
by the Noah model. In Chapter 11, the soil moisture retrievals are 
compared to simulations by the Noah model coupled to the MM5 
regional climate model. These parts are summarized below. 

12.1  Soil moisture retrieval from active microwaves 
A ground-based C- and L-band scatterometer data set collected 

throughout the corn growth cycle and a set including 2.5 years of 
ASAR (C-band and VV polarization) acquisitions over the central part 
of the Tibetan Plateau have been used for studying the soil moisture 
retrieval. The ground-based scatterometer data set benefits from a 
comprehensive set of in-situ measurement, specifically vegetation 
biomass and soil moisture. Unique about the ASAR data set over the 
data scarce Tibetan Plateau is that the high resolution microwave 
measurements are acquired at a fairly high temporal and over a 
substantial period of time. The ground-based scatterometer data has 
been utilized for evaluating the vegetation and surface roughness 
effects on backscatter (σo) measurements. Over a larger temporal 
and spatial scale, the impact of different land surface conditions (e.g. 
soil moisture, sparse vegetation, freeze/thaw) on the σo has been 
investigated and the retrieval of soil moisture has been performed 
using the ASAR data set.  

Chapter 5 discusses the effect of vegetation on fully polarimetric 
(HH, HV, VV) C- and L-band σo measured at incidence angles of 15, 
35, and 55 degrees for the corn growth cycle. The analysis shows 
that depending on the antenna configuration and growth stage, the σo 
measurements can be dominated either by attenuated surface 
scattering or by scattering from vegetation. The first mechanism is 
strongest within C-band σo measurements collected at 15 degrees 
during the early growth stage. The latter is more notable among the
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σo measured at peak biomass and incidence angles of 35 and 55 
degrees. Somewhat surprising is, however, that even at peak 
biomass the measured σo response to soil moisture is still 
considerable enabling the retrieval of soil moisture. This σo sensitivity 
to soil moisture is ascribed to scattering along the soil-vegetation 
pathways. 

Based on these observations an alternate method is proposed to 
correct σo measurements for vegetation and obtain more reliable soil 
moisture retrievals. The method is based on the concept that the 
ratio of the surface scattering contribution over the observed σo is 
affected by vegetation and can be described as a function of the 
vegetation water content (W). Experimentally determined 
relationships between this ratio and W have been used to reconstruct 
the surface scattering component from the σo measurements and 
retrieve soil moisture. Validation of the retrievals obtained with this 
method against the measured soil moisture yields errors varying from 
0.033 to 0.063 m3 m-3 depending on the antenna configuration. This 
accuracy is quite good specifically given the dense vegetation 
coverage with at peak biomass with a W of 5.1 kg m-2. Additional 
studies are, however, needed to establish the validity of the proposed 
method for other crop types.  

Also, the roughness of the soil surface influences the observed σo 
and has to be considered when retrieving soil moisture. The 
(Advanced) Integral Equation Method ((A)IEM, Fung et al. 1992, 
Chen et al. 2003) is the most widely applicable surface scattering 
model and is often used to simulate the σo from bare soil surfaces. 
This model represents the complex geometry of the soil surface as a 
single-scale stationary process, which allows adopting a 
parameterization based on 1-D surface height profile consisting of the 
root mean square height (s), correlation length (l) and 
autocorrelation length function (ACF). However, over large spatial 
domains typically insufficient information is available to determine 
this parameterization reliably. For retrieving soil moisture, therefore, 
a reduced number of parameters has to be used and the surface 
roughness is often assumed to be temporally stable.  

Chapter 6 discusses the impact of these simplifications on the 
accuracy of the retrieved soil moisture using the vegetation corrected 
σo measurements. The surface roughness parameters have been 
inverted for four parameterization types by assuming an ‘Exponential’ 
and ‘Gaussian’ ACF’s, and by using fixed (measured) or variable l. An 
evaluation of the retrieval accuracies shows that the most significant 
differences are noted when using different ACF’s, while the l has only 
a minor impact. However, differences in the retrieval accuracy are 
smaller than 0.01 m3 m-3. This suggests that regardless of the 
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employed parameterization type, an effective value for the s can be 
found without having a large impact on the retrieval accuracy.  

Additional analyses on the temporal stability of the roughness 
indicates that over the entire growth cycle surface roughness changes 
have only a limited impact on the retrieved soil moisture (<0.01 m3 

m-3). On a daily basis, however, the largest differences between the 
measured and retrieved soil moisture occur specifically after rain 
events. This increase in the retrieval error is strongest at HH 
polarization, L-band, and large incidence angles, which is in 
agreement with previous reports on σo sensitivities to surface 
roughness (e.g. Holah et al. 2005, Beaudoin et al. 1990, Zribi et al 
1997). In contradiction to previous reports (e.g. Ulaby and Batlivala 
1976, Ulaby et al. 1996, Shi et al. 1997, Macelloni et al. 1999) the 
soil moisture retrieved throughout the corn growth cycle is, therefore, 
more accurate for the VV polarization. 

Chapter 7 discusses the influence of land surface states on the 
ASAR σo at longer temporal and different spatial scales over the 
Tibetan Plateau. The σo signatures from 1x1 km2 areas covering a 
grassland and a wetland have been studied to identify its sensitivity 
to the changing land surface states. The lowest σo values from the 
grassland and wetland areas are obtained throughout the winter 
seasons because soil water is predominantly frozen resulting in 
dielectric properties comparable to dry soil conditions. Towards the 
summer, the wetland σo increases steadily and reaches its maximum 
as the monsoon is at peak intensity, while the grassland σo in the 
summer is characterized by large temporal variations. This contrast 
between the grassland and wetland σo dynamics is attributed to the 
highly variable soil moisture in the grassland caused by a large 
evaporative demand, while soil moisture conditions in wetlands are 
temporally stable.  

The differences between the grassland and wetland σo dynamics 
has consequences for the spatial σo variability observed at different 
spatial scales (e.g. 1x1 km2, 5x5 km2 and 30x30 km2). The 
comparison of the mean σo with its standard deviation (stdev) results 
in a specific triangular data points distribution, whereby the peak 
located near the mid range of σo values. When these σo dynamics are 
considered to be representative for the soil moisture conditions, these 
results suggest that the relationship between mean soil moisture and 
the spatial variability is not always uniquely defined. This implicates 
that relationships between the mean soil moisture and stdev, used for 
downscaling coarse resolution soil moisture products, cannot be 
assumed to be time-invariant, but should be obtained from additional 
near real-time data sources, such as SAR data.  

Another important observation is the discrepancy between the 
annual cycles of the NDVI and the wetland σo. The NDVI increase 
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starts later than for the wetland σo and its decrease is observed 
earlier. This, supported by the small portion of σo variations explained 
by the NDVI for both the grassland and wetland suggests that the 
vegetation effects on the ASAR σo observed over the Tibetan Plateau 
is fairly small.   

Therefore, the algorithm employed in Chapter 8 for retrieving soil 
moisture is solely based on the AIEM surface scattering model and 
assumes that the effects of vegetation are negligible. The roughness 
parameters needed for AIEM simulations is obtained through the 
inversion of a sequence of three σo measurements collected at 
different view angles under assumed dry conditions. As the dielectric 
properties of frozen soil are equivalent to the ones of dry soil, ASAR 
images collected in February and January have been utilized for the 
roughness inversion. The derived roughness parameterizations are 
used as input for retrieving soil moisture from the time series of 
ASAR σo. 

The resulting soil moisture retrievals represent the monsoon 
sequence quite well with their maximum values registered in the 
months July to September. Spatially, the retrieved soil moisture 
dynamics is also in accordance with the expectations; with the soil 
moisture retrieved over grasslands being highly variable, and wet and 
fairly stable conditions observed over the wetlands. A comparison of 
the retrieved against the soil moisture measured at a wetland site 
and three grassland sites yields Root Mean Squared Differences 
(RMSD’s) of 0.060 and 0.032 m3 m-3 for the wetland site and the 
three grassland sites, respectively. Normalized for their different 
dynamic soil moisture ranges the uncertainty levels obtained for the 
wetland and grassland are, however, quite similar, 16.9 and 17.3 % 
respectively. These error levels are comparable to the results of 
previous SAR based soil moisture retrieval studies. 

12.2  Simulation of land processes 
At present, the Noah land model is coupled to the National 

Centers for Environmental Prediction (NCEP) operational weather and 
climate prediction model for quantifying the soil moisture impact on 
land-atmosphere interactions. Crucial for its performance is a proper 
simulation of water movement through the soil column. Chapter 9 
evaluates different numerical schemes for vertically integrating the 
soil water flow and analyses the impact of the soil hydraulic model 
(SHM) employed for calculating the transport coefficients. 

Noah simulations forced by atmospheric variables measured at 
the Cabauw meteorological station (The Netherlands) shows that the 
current method used for vertical integration of the soil water flow 
systematically underestimates the upward water transport; often 
referred to as capillary rise. Therefore, a rapid dry-down of the root 
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zone is observed, while the deep soil layers remain relatively wet 
even under dry conditions and a high evaporative demand. Two 
alternative schemes are presented that incorporate the capillary rise 
mechanism.  

The SHM shapes the soil hydraulic functions (SHF’s), which 
determine the magnitude of the transport coefficients and the impact 
of the soil moisture stress on the heat flux partitioning. Noah (and 
most other LSMs) uses the SHM by Campbell (1974), while it is 
commonly understood that the Van Genuchten (1980) SHM 
represents measured SHF’s better. Surface water and energy budgets 
simulated by Noah using these two SHM’s are compared. The 
difference in the parameterization utilized by the Van Genuchten and 
Campbell SHM prevents, however, a direct comparison. The SHF’s of 
five soil type provided by the Dutch pedotransfer function (Wösten et 
al. 2001) have, therefore, been used to derive the Van Genuchten 
and two type Campbell parameterizations, whereby,  

1. The theoretical similarity in the retention curves is used 
(Campbell A); 

2. The Campbell parameters are fitted to the relationships 
between the transport coefficient and soil moisture content 
(Campbell B). 

Compared to Van Genuchten, typical for Campbell A are the 
larger transport coefficients in the mid and dry soil moisture range, 
while for Campbell B these coefficients are lower near saturation due 
to the necessity of smaller saturated conductivity. A consequence of 
these differences is that Noah with Campbell A transports water 
faster through the soil column, while with Campbell B it generates 
more surface runoff. Noah simulates, thus, larger soil water losses 
(e.g. evaporation, drainage and surface runoff) using both forms of 
Campbell SHF’s. This as well as the underestimation of the capillary 
rise mechanism could be one of the explanations for the prediction of 
too warm and too dry summers by ACM’s.  

Apart from issues related to the model physics, various 
investigations have also shown that the performance of land models 
can be improved by adjusting its parameterizations, specifically in the 
extreme environment, such as the Tibetan Plateau. Chapter 10 
discusses the adjustment in Noah’s soil and vegetation parameters 
needed to reproduce the soil temperature states and surface fluxes 
measured at a site on the Tibetan Plateau. An analysis of the Noah 
simulations obtained using the standard parameterizations shows 
that,  

1. The transfer of heat through the soil column underestimates 
the diurnal temperature cycle of the deeper layers; 

2. The partitioning of solar radiation results in an overestimation 
of the sensible heat flux. 
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By using different soil thermal properties for the top- and subsoil, 
and including an additional thin top soil layer, the diurnal cycle of the 
temperature in deep soil layer is enlarged. This also improves the 
temperature simulation in the shallow soil layer. Further, a decrease 
in the vegetation parameters constraining transpiration was found to 
be necessary for reducing the sensible heat flux overestimation from 
41 W m-2 to 20 W m-2. This illustrates once again that 
parameterizations utilized for global simulations can introduce large 
uncertainties locally, specifically over extreme environments, such as 
the Tibetan Plateau.  Encouraging is, however, that model structures 
of land models, in this case Noah, are flexible enough to reproduce 
the measured land surface process with some minor adjustments. 
 

12.3  Integration of satellite retrievals with land 
models 

Some uncertainties within Noah related to its model structure and 
the utilized parameterizations were discussed in Chapters 9 and 10. 
Nowadays, a reduction in model uncertainties is also being pursued 
by integrating simulated with modeled land surface states, for which 
often data assimilation techniques are used. A fundamental 
assumption in the application of data assimilation techniques is that 
the modeled and retrieved soil moisture climatologies are unbiased. 
This is hardly ever the case. Moreover, the spatial resolution of LSM’s 
is at least several kilometers, while ASAR observes soil moisture at a 
100 m resolution. A comparison of Noah simulations at a 10 km 
resolution against ASAR soil moisture retrievals from Chapter 8 
yields, thus, deviations that are related to 1) the inherent bias due to 
differences in the climatology of the simulated and retrieved soil 
moisture, 2) the differences in the spatial representation, and 3) the 
uncertainties associated with the simulations as well as retrievals. An 
understanding of the contribution of these sources of difference is 
needed to fully appreciate the value of integrating satellite soil 
moisture with models operating at a lower spatial resolution.  

Chapter 11 presents a method for quantification of these sources 
of differences. The decomposition of the sources of difference shows 
that during winters the spatial variability contributes for about 50% 
to the differences between the two products. This contribution 
increases to more than 70% for the monsoon affected period. In spite 
of the differences, however, the comparison of the two unbiased soil 
moisture products yields a RMSD of 0.051 m3 m-3 on a daily basis. 
This agreement between the simulated and ASAR retrieved soil 
moisture is no less than that for soil moisture products from coarse 
resolution microwave sensors.  
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As such, the integration of SAR based soil moisture products with 
large-scale simulations deserves more attention than it has obtained 
so far. One should, however, be aware that soil moisture differences 
between the large-scale simulation and high-resolution retrievals are 
largely caused by different spatial resolutions. Perhaps, the true value 
of using high resolution soil moisture products for large-scale 
modeling lies in improving the spatial soil moisture representation at 
the sub-grid level. Unfortunately, the temporal availability of SAR 
observations still hinders the development of operational high 
resolution soil moisture products. 

 
Pfff … 
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Samenvatting 
Bodemvocht heeft een belangrijke invloed op de verdeling van 

zonne-straling en dus ook op de ontwikkeling van weersystemen. Een 
verbeterde bodemvocht simulatie binnen klimaat modellen zal hun 
voorspellende vaardigheid kunnen verbeteren. Dit kan met 
verschillende methoden bereikt worden, bijvoorbeeld door het 
gebruik maken van realistischer model structuren. Echter, de 
integratie van modellen met observaties is ook populair door de 
toenemende beschikbaarheid van satelliet gegevens.  

 
Dit proefschrift draagt bij aan beide aspecten. Hoofdstukken 5 -

8 gaan over de verbetering van bodemvocht schattingen uit actieve 
microgolf data, terwijl in hoofdstukken 9 en 10 simulaties met het 
Noah model besproken worden. Tot slot, wordt in hoofdstuk 11 de 
bodemvocht geschat uit satelliet metingen vergeleken met de 
simulaties uitgevoerd door het Noah model gekoppeld aan het MM5 
regionaal klimaat model. Deze onderdelen zijn hieronder samengevat. 

Bodemvocht schattingen door middel van actieve 
microgolven  

Het schatten van bodemvocht uit actieve microgolf metingen is 
bestudeerd met behulp van een C- en L-band scatterometer data set 
verzameld over een maïs veld gedurende het groeiseizoen en een 2.5 
jaar lange reeks aan ASAR (C-band en VV polarisatie) beelden 
verkregen over het centrale deel van het Tibetaanse plateau. De 
interpretatie van scatterometer data is gesteund door een uitgebreide 
collectie in-situ metingen, wat een gedetailleerde analyse mogelijk 
maakt. Uniek aan de Tibetaanse ASAR data set is dat over een 
aanzienlijk tijdsbestek de SAR beelden beschikbaar zijn met relatief 
hoge temporele resolutie. Als zodanig is de scatterometer data set 
gebruikt om de effecten van vegetation en ruwheid op backscatter 
(σo) metingen te analyseren. Daarnaast is de ASAR data set gebruikt 
om, op een grotere temporele en ruimtelijke schaal, de invloed van 
verschillende condities (bodemvocht, vegetatie, vries/dooi) aan het 
landoppervlak op de σo te onderzoeken en bodemvocht te schatten. 

Hoofdstuk 5 bespreekt de invloed van maïs gedurende het 
groeiseizoen op polarimetrische (HH, HV, VV) C- en L-band σo 
gemeten vanuit invalshoeken van 15, 35 en 55 graden. Uit de 
analyse blijkt dat, afhankelijk van de antenne configuratie en het 
groeistadium, de σo metingen gedomineerd kunnen worden door een 
uitgedoofde verstrooiing van het land oppervlak of door verstrooiing 
geproduceerd met tussenkomst van de vegetatie. Het eerste 
mechanisme is het sterkst bij C-band metingen verzameld vanuit een 
kijkhoek van 15 graden aan het begin van het groei stadium. De 
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laatste is dominant in σo data gemeten tijdens piek biomassa en 
vanuit invalshoeken van 35 en 55 graden. Enigszins verrassend is 
echter dat zelfs ten tijde van piek biomassa de σo nog steeds gevoelig 
is voor bodemvocht. Deze gevoeligheid van de σo is toe te schrijven 
aan de verstrooiing langs de bodem-vegetatie trajecten.  

Op basis van deze analyze is een alternatieve methode ontwikkeld 
om σo metingen te corrigeren voor de effecten van vegetatie en 
betrouwbaardere bodemvocht schattingen te verkrijgen. De methode 
is gebaseerd op het concept dat de ratio van de oppervlakte 
verstrooiing over de gemeten σo beïnvloed wordt door de vegetatie en 
beschreven kan worden als functie van het watergehalte van de 
vegetatie (W). Experimenteel bepaalde relaties tussen deze ratio en 
W zijn gebruikt om de oppervlakte verstrooiing te reconstrueren 
vanuit de gemeten σo en bodemvocht te schatten. Validatie van de 
verkregen bodemvocht waarden tegen de in-situ metingen resulteert 
in gemiddelde fouten variërend van 0.033 tot 0.063 m3 m-3 
afhankelijk van de antenne configuratie. Een dergelijke 
nauwkeurigheid is behoorlijk goed zeker als ook de dichte begroeiing 
gedurende het groeiseizoen in beschouwing wordt genomen. 
Aanvullende studies zijn echter nodig om de geldigheid van de 
voorgestelde methode voor andere gewassen te bepalen.  

 
Ook de ruwheid van het bodemoppervlak is van invloed op de 

waargenomen σo en is nodig voor het schatten van bodemvocht. De 
(Advanced) Integral Equation Method ((A)IEM, Fung et al. 1992, 
Chen et al. 2003), toepasbaar voor oppervlakken met verschillende 
ruwheden, wordt vaak gebruikt om de σo van kale grond te 
simuleren. Dit model representeert de complexe geometrie van het 
oppervlak als een ‘single-scale’ stationair process. Door deze 
aanname kan de geometrie van het oppervlak gekarakteriseerd 
worden door drie statische variabelen te bepalen uit 1-dimensionale 
hoogte profielen, bestaande uit root mean square height (s), 
autocorrelatie lengte (l) and autocorrelatie functie (ACF). Echter, over 
grote ruimtelijke domeinen is meestal onvoldoende informatie 
beschikbaar om deze parameters betrouwbaar te kunnen bepalen. 
Voor het schatten van bodemvocht uit σo is het daardoor noodzakelijk 
om het aantal ruwheidsparameters te reduceren en deze 
parameterisatie als constant in tijd te beschouwen.  

Hoofdstuk 6 behandelt de invloed van deze aannames op de 
nauwkeurigheid van bodemvocht bepalingen vanuit de voor vegetatie 
gecorrigeerde σo metingen. Vier typen ruwheidsparameterisaties zijn 
gecalibreerd, zijnde met Gaussische of Exponentïele ACF, en met de 
vaste (gemeten) of een gecalibreerde l. Uit de analyse van de 
nauwkeurigheid van de bodemvochtbepalingen blijkt dat de meest 
significant verschillen zich voordoen tussen de Gaussische en 
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Exponentïele ACF, en dat de l slechts een geringe invloed heeft. 
Echter, de meeste verschillen tussen de vier typen parameterizaties 
zijn kleiner dan 0.01 m3 m-3. Dit laat zien dat ongeacht het type 
parameterisatie een effectieve waarde voor de s kan worden 
gevonden zonder dat het de nauwkeurigheid van bodemvocht  
schattingen significant aantast.  

De bestudering van de temporele stabiliteit van de ruwheid 
suggereert dat gemiddeld over het gehele groeiseizoen 
ruwheidsveranderingen een beperkte invloed (<0.01 m3 m-3) hebben 
op de nauwkeurigheid van bodemvocht bepalingen. Op een dagelijkse 
basis treden echter de grote verschillen op specificek na periodes met 
regen. De verhoogde discrepantie tussen de metingen en schattingen 
is het grootst voor HH polarisatie, L-band and grote invalshoeken. Dit 
is consistent met eerdere studies die de gevoeligheid van σo voor de 
ruwheid bediscusseerden (bijv. Holah et al. 2005, Beaudoin et al. 
1990, Zribi et al. 1997). Hierdoor is in tegenstelling tot voorgaande 
studies (bijv. Ulaby en Batlivala 1979, Ulaby et al. 1996, Shi et al. 
1997, Macelloni et al. 1999) de bodemvocht geschat tijdens groei 
seizoen nauwkeuriger voor de VV polarisatie. 

Hoofdstuk 7 bespreekt de invloed van de toestand van het 
landoppervlak op de ASAR σo over een langere tijdsschaal en voor 
verschillende ruimtelijke schaalniveau’s op het Tibetaans Plateau. 
Reeksen aan σo metingen verzameld over een 1x1 km2 grasland en 
een 1x1 km2 moerasgebeid zijn bestudeerd om de gevoeligheid voor 
veranderingen in de toestand van het landoppervlak te indentificeren. 
De laagste σo waarden over zowel het grasland als het moerasgebeid 
zijn verkregen tijdens de winters, omdat in deze periode van het jaar 
het water in de bodem voornamelijk bevroren is wat resulteert in 
diëlektrische eigenschappen die vergelijkbaar zijn met die van een 
droge bodem. Richting het zomer seizoen stijgt de σo waargenomen 
over het moerasgebeid gestaag en bereikt het maximum als de 
moesson intensiteit op zijn hoogst is. De σo waargenomen over het 
grasland wordt echter gekenmerkt door grote fluctuaties in tijd, 
voornamelijk tijdens de zomers. Dit contrast in de σo dynamiek over 
het grasland en het moerasgebied kan toegeschreven worden aan 
enerzijds de sterk variabele bodemvocht in het grasland door de 
grote verdampingsvraag en anderzijds de temporeel stabiele 
omstandigheden in het moerasgebied.  

Het duidelijke verschil tussen de σo dynamieken van het grasland 
en het moerasgebied heeft gevolgen voor de ruimtelijke σo 
variabiliteit waargenomen op verschillende ruimtelijke schalen (bijv. 
1x1 km2, 5x5 km2 en 30x30 km2). Met als gevolg dat de vergelijking 
van de gemiddelde σo voor een bepaalde domein met de 
standaarddeviatie (stdev) resulteert in een driehoekige verdeling van 
de data punten waarbij de piek in het ongeveer midden van het totale 
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σo bereik ligt. Wanneer de σo beschouwd wordt als representant van 
de bodemvocht condities laten deze resultaten zien dat de relatie 
tussen het ruimtelijk gemiddelde en variabiliteit niet altijd eenduidig 
is gedefinieerd. Dit betekent dat voor downscaling van lage resolutie 
bodemvocht producten de relatie tussen het gemiddelde en de stdev 
niet onafhankelijk van tijd kan worden genomen, maar verkregen 
dient te worden uit andere data bronnen, zoals SAR data.  

Een andere belangrijke observatie is het verschil tussen de 
jaarlijkse NDVI cyclus en de σo van het moerasgebied. De NDVI 
stijging tijdens het seizoen begint later dan de toename in de σo en 
de daling wordt eerder waargenomen. Dit suggereert dat het effect 
van vegetatie op de σo waargenomen door ASAR over het Tibetaans 
Plateau beperkt is.  

Het algoritme gebruikt in Hoofdstuk 8 voor het schatten van 
bodemvocht is daarom enkel gebasseerd op het AIEM model en 
verwaarloost dus de invloed van vegetatie op σo. De 
ruwheidsparameters benodigd voor het AIEM model zijn bepaald door 
middel van calibratie met als input drie σo metingen verzameld vanuit 
verschillende kijkhoeken en onder droge omstandigheden. Aangezien 
de diëlektrische eigenschappen van een diep bevroren bodem gelijk 
zijn aan die van een droge bodem zijn ASAR beelden verzameld in 
februari en januari gebruikt voor de bepaling van de ruwheid. De 
verkregen ruwheidsparameters zijn gebruikt als input voor de 
bodemvocht bepaling uit de reeks ASAR metingen. 

Binnen de tijdreeks aan bodemvocht bepalingen is het 
karakteristieke moesson patroon goed vertegenwoordigd met de 
maximale waarden verkregen van juli tot en met september. Ook de 
ruimtelijke dynamiek is zoals verwacht; met een zeer variabele 
bodemvocht in de graslanden, en natte maar stabiele 
omstandigheden waargenomen in de moerasgebieden. De 
vergelijking tussen de satelliet bepaalde en het gemeten bodemvocht 
in drie grasland en een moeras locaties resulteert in Root Mean 
Squared Differences (RMSD’s) van 0.032 en 0.060 m3 m-3 
respectievelijk. Genormaliseerd voor de verschillende dynamieken 
van graslanden en moerasgebieden zijn de onzekerheden verkregen 
voor de twee landbedekkingstypen vergelijkbaar. Dergelijke 
onzekerheden zijn in overeenstemming met de resultaten uit eerdere 
studies.  

Simulatie van land processen  
Het Noah land model is momenteel gekoppeld aan de National 

Centers for Environmental Prediction (NCEP) operationele weer en 
klimaat voorspellingsmodel om onder andere de invloed van 
bodemvocht op land-atmosfeer interacties te beschrijven. Cruciaal 
voor de kwaliteit van de voorspellingen is een correcte representatie 
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van de stroming van water door de bodem. Hoofdstuk 9 evalueert 
verschillende numerieke schema’s voor de verticale integratie van het 
bodemvocht transport en bespreekt de invloed van het gebruikte 
bodemfysische model op de gesimuleerde waterbalans en warmte-
uitwisselingen.  

Uit de Noah simulaties blijkt dat de huidige methode om het 
bodemvocht transport vertical te integreren het opwaartse transport 
door capillaire stijging systematisch onderschat. Hierdoor droogt de 
wortelzone snel uit, terwijl de diepere bodemlagen relatief nat blijven 
zelfs onder droge omstandigheden met een hoge verdampings vraag. 
Twee alternatieve methoden zijn gepresenteerd die wel het capillaire 
stijgingsmechanisme mee nemen.  

Het bodemfysisch model (BFM) vormt de bodemfysische functies 
(BFF) die op hun beurt de grote van de transportcoëfficiënten en het 
effect van vochttekort op de verdamping bepalen. Noah (en de 
meeste andere land modellen) gebruikt het BFM ontwikkeld door 
Campbell (1974), terwijl het algemeen bekend is dat het BFM van 
Van Genuchten (1980) beter de gemeten BFF schat. De water- en 
energiebalans gesimuleerd door middel van Noah met deze twee 
BFM’s zijn vergeleken met elkaar. Het verschil in de parameterisatie 
benodigd voor de Van Genuchten en Campbell BFM’en hindert echter 
een direkte vergelijking.  De BFF’s van vijf bodemtypen gedefinieerd 
binnen de Nederlandse pedotransfer functie (Wösten et al. 2001) zijn 
daarom gebruikt om de parameterisaties te bepalen. Twee typen 
Campbell parameters zijn afgeleid, waarbij, 

1. De theoretische gelijkenis in de retentie curven in tact 
wordt gehouden (Campbell A); 

2. De parameters gefit om de relaties tussen de transport-
coëfficiënten en bodemvocht zo goed mogelijk te 
beschrijven (Campbell B).  

In vergelijking met Van Genuchten zijn grotere transport- 
coëfficiënten onder gemiddelde en lage bodemvocht condities 
karakteristiek voor Campbell A. Aan de andere kant, typisch voor de 
Campell B parameterisatie zijn de lagere coëfficiënten bij saturatie, 
terwijl in het overige bodemvocht traject een goede match met Van 
Genuchten is verkregen. Het gevolg van deze verschillen is dat Noah 
met Campbell A het water snel door de bodemkolom transpoteert, 
terwijl met Campbell B meer surface runoff wordt gegenereerd. Noah 
simuleert dus grotere bodemvocht verliezen (verdamping, drainage, 
surface runoff) met beide typen Campbell parameterisaties. Dit in 
combinatie met de onderschatting van het opwaarts vochttransport 
zou een van de verklaringen kunnen zijn voor de voorspelling te 
warme en te droge zomers door de klimaatmodellen.  

Naast de structurele veranderingen in de modelfysica, hebben 
verschillende onderzoeken ook aangetoond dat de prestaties van land 
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modellen sterk verbeterd kunnen worden door het aanpassen van de 
modelparameters, vooral in extreme gebieden zoals het Tibetaans 
Plateau. Hoofdstuk 10 bespreekt de benodigde veranderingen aan 
de bodem en vegetatie parameterisaties om de bodemtemperaturen 
en verdamping gemeten bij een station op het Tibetaans Plateau te 
kunnen reproduceren. Uit een analyse van Noah simulaties verkregen 
met behulp van standard parameterisaties blijkt dat:  

1. De gesimuleerde warmteoverdracht in het bodemprofiel de 
dagelijke temperatuur cyclus in de diepere lagen onderschat;  

2. De voelbare warmtestroom overschat wordt en dus de 
verdamping onderschat. 

Door het toekennen van verschillende thermische eigenschappen 
aan de bodem- en ondergrond, en het opnemen van een extra dunne 
bodemlaag in de modelstructuur is de dagelijkse gang in dieper 
bodemlagen vergroot. Dit verbetert ook de simulatie van de 
temperaturen in de ondiepere lagen. Daarnaast blijkt een reductie in 
de vegetation parameters, die de transpiratie beperken, nodig te zijn 
om de overschatting van de voelbare warmte stroom te verkleinen 
van 41 W m-2 naar 20 W m-2. Dit illustreert eens te meer dat 
parameterisaties gebruikt voor simulatie op continentale schaal, 
lokaal grote onzekerheden kunnen veroorzaken. Het is echter 
bemoedigend dat de modelstructuren van land modellen, in dit geval 
Noah, flexible genoeg zijn om met een kleine aanpassing de land-
atmosfeer processen met een redelijke nauwkeurigheid kunnen 
reproduceren, zelfs voor een extreem gebied als het Tibetaans 
Plateau.  

Integratie van satellite observaties met land 
modellen  

Bepaalde onzekerheden binnen Noah simulaties ten aanzien van 
de modelstructuur en de parameterisatie zijn besproken in 
Hoofdstukken 9 en 10. Vandaag de dag wordt een reductie van 
dergelijke onderzekerheden ook wel nagestreefd door de integratie 
van de gesimuleerde met geobserveerde toestanden. Een veel 
gebruikte methode is data assimilatie. Een cruciale aanname in de 
toepassing van veel data assimilatie technieken is echter dat de 
gemodelleerde en geobserveerde bodemvocht niet systematisch van 
elkaar afwijken. Dit is vrijwel nooit het geval. Bovendien is de 
ruimtelijke resolutie van land modellen op zijn minst enkele 
kilometers, terwijl satellite beelden een resolutie kunnen hebben van 
tientallen meters. Een vergelijk tussen 10-km resolutie Noah 
simulaties en de 100-m resolutie ASAR bodemvocht van Hoofstuk 8 
zal dus leiden tot verschillen die veroorzaakt zijn door 1) het 
inherente verschil tussen de klimatologie van de gesimuleerde en 
geobserveerde bodemvocht, 2) de verschillen in de ruimtelijke 
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representatie, en 3) de individuele onzekerheden als gevolg van de 
simulaties en observaties zelf. Een inzicht in deze verschilbronnen is 
nodig om de waarde van de integratie van bodemvocht uit satelliet 
beelden met modellen, die operationeel zijn op een lagere ruimtelijke 
resolutie, daadwerkelijk te kunnen appreciëren. 

Hoofdstuk 11 presenteert een methode voor het kwantificeren 
van deze verschilbronnen. Uit de decompositie blijkt dat gedurende 
de winters de ruimtelijke variabiliteit bijdraagt aan ongeveer 50% van 
de verschillen tussen de twee producten. Deze bedrage stijgt tot 
meer dan 70% voor de periode tijdens de moesson.  Ondanks deze 
verschillen resulteert de vergelijking van de twee (voor de 
systematische afwijking gecorrigeerde) producten tot een RMSD van 
0.051 m3 m-3 op een dagelijkse basis. Deze overeenkomst tussen de 
gesimuleerde en ASAR geobserveerde bodemvocht is niet slechter 
dan de resultaten verkregen met bodemvocht producten uit microgolf 
observaties met een grove resolutie.  

Op basis van deze resultaten kan worden gezegd dat de integratie 
van bodemvocht producten uit SAR meer aandacht verdient dan het 
tot nu toe heeft gekregen. Men moet echter wel beseffen dat een 
groot deel van de verschillen tussen lage-resolutie simulaties en 
hoge-resolutie SAR bodemvocht veroorzaakt wordt door de 
verschillende ruimtelijke resoluties. Misschien ligt de werkelijke 
waarde van hoge resolutie bodemvocht producten wel in verbetering 
van de ruimtelijke representativiteit binnen modellen. Helaas vormt 
de beschikbaarheid beelden op een hoge temporele resolutie nog een 
belemmering voor de ontwikkeling van een bodemvocht product 
gebaseerd op SAR data. 
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